

TOOLS FOR TEAM DEVELOPMENT:

WHY VENDORS ARE FINALLY GETTING IT

RIGHT

DAVID CHAPPELL

DECEMBER 2008

SPONSORED BY MICROSOFT CORPORATION

COPYRIGHT © 2008 CHAPPELL & ASSOCIATES

2

Most software development is done by teams of people. Yet even though tools to support team-based

development have been available for some time, they weren’t always as useful as they might have been.

Today, the vendors who create those tools have reached a consensus on what the real problem is, and

they’re providing tools to solve it. The result is team development tools that focus on the right thing:

optimizing the end-to-end development process.

THE ORIGINAL PROBLEM: COMBINING TOOLS

To understand what today’s consensus is and why it’s important, it’s useful to look first at the history of

development tools. Figure 1 illustrates how the tools developers use have evolved over the last few

decades.

Figure 1: What began as separate tools have evolved into unified team development tools.

In the 1970s, all of the functions performed in the software development process were supported by

different tools. Developers created code using an editor, then explicitly invoked a separate compiler when

needed. Similarly, the tools used to build complete executables, test code, and manage versions of that

code were all distinct from one another.

Over time, these separate tools for software development have been combined. In the early 1980s,

editors and compilers were united to form integrated development environments (IDEs). Developers loved

IDEs—yoking these previously separate tools together meant, for

example, that errors could be fixed immediately right in the source

code—and so IDEs caught on quickly. Combining these two tools made

sense, because it let developers be significantly more productive.

As build tools, test tools, and source code control tools became more

widely used, it also made sense to combine them with one another

and with IDEs. Just as integrating compilers and editors allowed things

that weren’t possible when the two were separate, grouping all of

these tools together was also a step forward. The result was team development tools, an advance that

began appearing in the 1990s.

Over time, what were

once separate tools for

software development

have been combined.

3

Unlike IDEs, which caught on quickly, organizations were slower to embrace team development tools. This

slowness was partly because this kind of unified tool is harder to adopt than an IDE. Moving from a

separate editor and compiler to a unified IDE requires only individual developers to change—it’s easy.

Moving from separate tools for writing and compiling code, doing builds, testing, and source code control

is significantly harder. More people have to change—not just developers—and more important, the

development process itself must change.

Making this kind of process change can be challenging, creating various kinds of resistance. For example,

one of the most appealing benefits of team development tools is that they can automatically track

information about the development process, then generate reports on a project’s progress. While this

transparency is a great boon for the people who manage the project, it also means that people on the dev

team have nowhere to hide. If a developer hasn’t checked in any new code in the last week, this problem

will show up quickly.

There’s also another important reason why organizations have been slow to adopt team development

tools: The tools weren’t initially as valuable as they might have been. In fact, it’s fair to say that, as in most

new areas, the real problem wasn’t fully understood at the beginning. Today, however, that’s no longer

true: The challenge has become clear.

THE REAL PROBLEM: OPTIMIZING END-TO-END FLOW

When vendors (and open source projects) first created team development tools, they commonly built or

acquired the best tool they could for each area: development, testing, source code control, and so on.

This kind of point optimization led to some excellent tools, but it didn’t solve the complete problem. The

goal in team-based software development isn’t optimizing separate parts of the process—it’s optimizing

the process as a whole.

To see why this is so important, think of a manufacturing process where a part takes three hours to

manufacture, then sits in a warehouse for three weeks waiting to be shipped to a customer. Cutting the

manufacturing time in half won’t make the customer any happier—what needs to be optimized is the

end-to-end flow. Similarly, an organization that improves how its developers write and compile software

won’t see much benefit if, say, testing doesn’t also get better. By providing a cohesive environment for

creating software, team development tools can help optimize the entire process, not just its individual

components.

This idea becomes even more important given how software development has changed over the last few

decades. Developers once waited an hour or more to get the results of compiling new code, then waited

days or weeks for meaningful test results. Today, creating, compiling, and testing code happen

continually—the cycles are much shorter—and the transitions between them are more frequent. Making

the process better requires making these transitions as smooth as possible.

Doing all of this requires tools that work together well, with a common way to share information across

different aspects of the process. Just gluing together good tools in each area won’t work. What’s needed

is an approach like that shown in Figure 2.

4

Figure 2: Optimizing the development process as a whole requires a unified approach to storing and

working with the artifacts of that process.

Tools used for different purposes—working with requirements, specifying architecture, developing code,

testing code, and project management—should all be able to work with a common set of interconnected

artifacts stored in a common place. As Figure 2 shows, those artifacts can include requirements, design

documents, various versions of source code, test cases, statistics about this development project, and

more. This kind of integration allows all sorts of useful things: automatically recording code check-ins,

associating tests with source code versions, generating historical reports of bug counts, and more. More

important, it allows optimizing the entire process. The flow of work is now apparent, and so making that

flow as smooth as possible gets easier.

For the most part, the first generation of team development tools

didn’t take this approach. The vendors have learned from their

experience, however, and team-based tools today can provide this

broad integration. Microsoft’s Visual Studio Team System, for example,

includes specialized tools for architecture, development, testing, and

more, all of which rely on Team Foundation Server (TFS) to store the

artifacts they work with. IBM’s Jazz platform takes a similar approach,

with different tools supporting different functions, and Jazz Team

Server acting in a role similar to Microsoft’s TFS.

When our industry converges on an architecture, it means there’s

broad consensus about the best way to do something. This consensus

has appeared in team development tools. The vendors have figured

When our industry

converges on an

architecture, it means

there’s broad

consensus about the

best way to do

something.

5

out that the real goal is optimizing the development process as a whole, not just individual parts of that

process.

CONCLUSION

This is an important moment in the evolution of development tools. Since team development tools are

now focusing on the right problem, they have more to offer than they did ten years ago. Organizations

doing team-based development—a category that includes almost everybody—can benefit from taking

another look at this style of tool.

Still, don’t expect adopting team development tools to be as easy as adopting IDEs. The challenge of

clearly understanding (and perhaps changing) your development process still exists. Nonetheless, just as

IDEs made life easier for individual developers by combining what were once separate tools, team

development tools can help developers and everyone else on a development team work together more

effectively. Given how important software is to most organizations, improvements in how we create it are

always welcome.

ABOUT THE AUTHOR

David Chappell is Principal of Chappell & Associates (www.davidchappell.com) in San Francisco, California.

Through his speaking, writing, and consulting, he helps people around the world understand, use, and

make better decisions about new technology.

