

INTRODUCING THE AZURE SERVICES

PLATFORM

AN EARLY LOOK AT WINDOWS AZURE, .NET SERVICES,

SQL SERVICES, AND LIVE SERVICES

DAVID CHAPPELL

MAY 2009

SPONSORED BY MICROSOFT CORPORATION

2

CONTENTS

An Overview of the Azure Services Platform ... 3

Windows Azure .. 4

.NET Services.. 6

SQL Services ... 8

Live Services ... 10

A Closer Look at the Technologies ... 13

Windows Azure .. 13

Running Applications .. 13

Accessing Data .. 15

.NET Services.. 17

Access Control Service ... 17

Service Bus .. 19

Workflow Service .. 21

SQL Services ... 22

SQL Data Services .. 22

άIǳǊƻƴέ 5ŀǘŀ Iǳō ... 24

Live Services ... 26

Accessing Data .. 27

Using a Mesh ... 28

Mesh-Enabled Web Applications .. 30

Conclusions ... 31

About the Author .. 32

3

AN OVERVIEW OF THE AZURE SERVICES PLATFORM

Using computers in the cloud can make lots of sense. Rather than buying and maintaining your own

machines, why not exploit the acres of Internet-accessible servers on offer today? For some applications,

their code and data might both live in the cloud, where somebody else manages and maintains the

systems they use. Alternatively, applications that run inside an organizationτon-premises applicationsτ

might store data in the cloud or rely on other cloud infrastructure services. Applications that run on

desktops and mobile devices can use services in the cloud to synchronize information across many

systems or in other ways. IƻǿŜǾŜǊ ƛǘΩǎ ŘƻƴŜΣ ŜȄǇƭƻƛǘƛƴƎ ǘƘŜ ŎƭƻǳŘΩǎ capabilities can improve our world.

But whether an application runs in the cloud, uses services provided by the cloud, or both, some kind of

application platform is required. Viewed broadly, an application platform can be thought of as anything

that provides developer-accessible services for creating applications. In the local, on-premises Windows

world, for example, this includes technologies such as the .NET Framework, SQL Server, and more. To let

applications exploit the cloud, cloud application platforms must also exist. And because there are a variety

of ways for applications to use cloud services, different kinds of cloud platforms are useful in different

situations.

aƛŎǊƻǎƻŦǘΩǎ Azure Services Platform is a group of cloud technologies, each providing a specific set of

services to application developers. As Figure 1 shows, the Azure Services Platform can be used both by

applications running in the cloud and by applications running on local systems.

Figure 1: The Azure Services Platform supports applications running in the cloud and on local systems.

4

The components of the Azure Services Platform include:

 Windows Azure: Provides a Windows-based environment for running applications and storing data on

servers in Microsoft data centers.

 Microsoft .NET Services: Offers distributed infrastructure services to cloud-based and local

applications.

 Microsoft SQL Services: Provides data services in the cloud based on SQL Server.

 Live Services: Through the Live Framework, provides access to data from aƛŎǊƻǎƻŦǘΩǎ Live applications

and others. The Live Framework also allows synchronizing this data across desktops and devices,

finding and downloading applications, and more.

Each component of the Azure Services Platform has its own role to play. This overview describes all four,

first at a high level, then in a bit more detail. While none of them are yet finalτdetails and more might

change before their initial releaseτƛǘΩǎ not too early to start understanding this new set of platform

technologies.

WINDOWS AZURE

At a high level, Windows Azure ƛǎ ǎƛƳǇƭŜ ǘƻ ǳƴŘŜǊǎǘŀƴŘΥ LǘΩǎ ŀ ǇƭŀǘŦƻǊƳ ŦƻǊ ǊǳƴƴƛƴƎ Windows applications

and storing their data in the cloud. Figure 2 shows its main components.

Figure 2: Windows Azure provides Windows-based compute and storage services for cloud applications.

5

As the figure suggests, Windows Azure runs on a large number of machines, all located in Microsoft data

centers and accessible via the Internet. A common Windows Azure fabric knits this plethora of processing

power into a unified whole. Windows Azure compute and storage services are built on top of this fabric.

The Windows Azure compute service is based, of course, on Windows. For the initial availability of this

service, a Community Technology Preview (CTP) made public in the fall of 2008, Microsoft allowed

Windows Azure to run only applications built on the .NET Framework. Today, however, Windows Azure

also supports unmanaged code, letting developers run ŀǇǇƭƛŎŀǘƛƻƴǎ ǘƘŀǘ ŀǊŜƴΩǘ ōǳƛƭǘ ƻƴ ǘƘŜ Φb9¢

Framework. In either case, those applications are written in ordinary Windows languagesτC#, Visual

Basic, C++, and othersτusing Visual Studio 2008 or another development tool. Developers can create

Web applications using technologies such as ASP.NET and Windows Communication Foundation (WCF),

applications that run as independent background processes, or applications that combine the two.

Both Windows Azure applications and on-premises applications can access the Windows Azure storage

service, and both do it in the same way: using a RESTful approach. The underlying data store is not

Microsoft SQL Server, however. In fact, Windows Azure ǎǘƻǊŀƎŜ ƛǎƴΩǘ ŀ ǊŜƭŀǘƛƻƴŀƭ system, and its query

ƭŀƴƎǳŀƎŜ ƛǎƴΩǘ {v[Φ .ŜŎŀǳǎŜ ƛǘΩǎ primarily designed to support applications built on Windows Azure, it

provides simpler, more scalable kinds of storage. Accordingly, it allows storing binary large objects (blobs),

provides queues for communication between components of Windows Azure applications, and even

offers a form of tables with a simple query language. (For Windows Azure applications that do need

traditional relational storage, however, the Azure Services Platform provides SQL Data Services, described

later.)

Running applications and storing their data in the cloud can have clear benefits. Rather than buying,

installing, and operating its own systems, for example, an organization can rely on a cloud provider to do

this for them. Also, customers pay just for the computing and storage they use, rather than maintaining a

large set of servers only for peak loads. And iŦ ǘƘŜȅΩǊŜ ǿǊƛǘǘŜƴ ŎƻǊǊŜŎǘƭȅΣ ŀǇǇƭƛŎŀǘƛƻƴǎ Ŏŀƴ ǎŎŀƭŜ ŜŀǎƛƭȅΣ

taking advantage of the enormous data centers that cloud providers offer.

Yet achieving these benefits requires effective management. In Windows Azure, each application has a

configuration file, as shown in Figure 2. By changing the information in this file manually or

programmaticallyΣ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƻǿƴŜǊ Ŏŀn control various aspects of its behavior, such as setting the

number of instances that Windows Azure should run. The Windows Azure fabric monitors the application

to maintain this desired state.

To let its customers create, configure, and monitor applications, Windows Azure provides a browser-

accessible portal. A customer provides a Windows Live ID, then chooses whether to create a hosting

account for running applications, a storage account for storing data, or both. An application is free to

charge its customers in any way it likes: subscriptions, per-use fees, or anything else.

Windows Azure is a general platform that can be used in various scenarios. Here are a few examples, all

based on what the CTP version allows:

 A start-up creating a new Web siteτthe next Facebook, sayτcould build its application on Windows

Azure. Because this platform supports both Web-facing services and background processes, the

application can provide an interactive user interface as well as executing work for users

asynchronously. Rather than spending time and money worrying about infrastructure, the start-up

can instead focus solely on creating code that provides value to its users and investors. The company

6

can also start small, incurring low costs while its application has only a few users. If their application

catches on and usage increases, Windows Azure can scale the application as needed.

 An ISV creating a software-as-a-service (SaaS) version of an existing on-premises Windows application

might choose to build it on Windows Azure. Because Windows Azure mostly provides a standard

Windows ŜƴǾƛǊƻƴƳŜƴǘΣ ƳƻǾƛƴƎ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ōǳǎƛƴŜǎǎ ƭƻƎƛŎ ǘƻ ǘƘƛǎ ŎƭƻǳŘ ǇƭŀǘŦƻǊƳ ǿƻƴΩǘ ǘȅǇƛŎŀƭƭȅ

pose many problems. And once again, building on an existing platform lets the ISV focus on their

business logicτthe thing that makes them moneyτrather than spending time on infrastructure.

 An enterprise creating an application for its customers might choose to build it on Windows Azure.

Because Windows Azure supports .NETΣ ŘŜǾŜƭƻǇŜǊǎ ǿƛǘƘ ǘƘŜ ǊƛƎƘǘ ǎƪƛƭƭǎ ŀǊŜƴΩǘ ŘƛŦŦƛŎǳƭǘ ǘƻ ŦƛƴŘΣ ƴƻǊ ŀǊŜ

ǘƘŜȅ ǇǊƻƘƛōƛǘƛǾŜƭȅ ŜȄǇŜƴǎƛǾŜΦ wǳƴƴƛƴƎ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƛƴ aƛŎǊƻǎƻŦǘΩǎ Řŀǘŀ ŎŜƴǘŜǊǎ ŦǊŜŜǎ ǘƘŜ ŜƴǘŜǊǇǊƛǎŜ

from the responsibility and expense of managing its own servers, turning capital expenses into

operating expenses. And especially if the application has spikes in usageτƳŀȅōŜ ƛǘΩǎ ŀƴ ƻƴ-line

ŦƭƻǿŜǊ ǎǘƻǊŜ ǘƘŀǘ Ƴǳǎǘ ƘŀƴŘƭŜ ǘƘŜ aƻǘƘŜǊΩǎ 5ŀȅ ǊǳǎƘτletting Microsoft maintain the large server

base required for this can make economic sense.

Running applications in the cloud is one of the most important aspects of cloud computing. With

Windows Azure, Microsoft provides a platform for doing this, along with a way to store application data.

As interest in cloud computing continues to grow, expect to see more Windows applications created for

this new world.

.NET SERVICES

Running applications in the cloud is an ƛƳǇƻǊǘŀƴǘ ŀǎǇŜŎǘ ƻŦ ŎƭƻǳŘ ŎƻƳǇǳǘƛƴƎΣ ōǳǘ ƛǘΩǎ ŦŀǊ ŦǊƻƳ ǘƘŜ ǿƘƻƭŜ

ǎǘƻǊȅΦ LǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǘƻ ǇǊƻǾƛŘŜ ŎƭƻǳŘ-based infrastructure services that can be used by either on-

premises applications or cloud applications. Filling this gap is the goal of .NET Services.

Originally known as BizTalk Services, the functions provided by .NET Services address common

infrastructure challenges in creating distributed applications. Figure 3 shows its components.

7

Figure 3: .NET Services provides cloud-based infrastructure that can be used by both cloud and on-

premises applications.

The components of .NET Services are:

 Access Control: An increasingly common approach to identity is to have each user supply an

application with a token containing some set of claims. The application can then decide what this user

is allowed to do based on these claims. Doing this effectively across companies requires identity

federation, which lets claims created in one identity scope be accepted in another. It might also

require claims transformation, modifying claims ǿƘŜƴ ǘƘŜȅΩǊŜ ǇŀǎǎŜŘ ōŜǘǿŜŜƴ identity scopes. The

Access Control service provides a cloud-based implementation of both.

 Service Bus: 9ȄǇƻǎƛƴƎ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǎŜǊǾƛŎŜǎ ƻƴ ǘƘŜ LƴǘŜǊƴŜǘ ƛǎ ƘŀǊŘŜǊ ǘƘŀƴ Ƴƻǎǘ ǇŜƻǇƭŜ ǘƘƛƴƪΦ ¢ƘŜ

goal of Service Bus is to make this simpler by letting an application expose Web services endpoints

that can be accessed by other applications, whether on-premises or in the cloud. Each exposed

endpoint is assigned a URI, which clients can use to locate and access the service. Service Bus also

handles the challenges of dealing with network address translation and getting through firewalls

without opening new ports for exposed applications.

 Workflow: Creating composite applications, as in enterprise application integration, requires logic

that coordinates the interaction among the various parts. This logic is sometimes best implemented

using a workflow capable of supporting long-running processes. Built on Windows Workflow

Foundation (WF), the Workflow service allows running this kind of logic in the cloud.

Here are some examples of how .NET Services might be used:

 An ISV that provides an application used by customers in many different organizations might use the

Access Control service ǘƻ ǎƛƳǇƭƛŦȅ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŘŜǾŜƭƻǇƳŜƴǘ ŀƴŘ ƻǇŜǊŀǘƛƻƴΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘƛǎ

8

.NET Services component could translate the diverse claims used in the various customer

organizations, each of which might use a different identity technology internally, into a consistent set

ǘƘŀǘ ǘƘŜ L{±Ωǎ ŀǇǇƭƛŎŀǘƛƻƴ ŎƻǳƭŘ ǳǎŜΦ Doing this also allows offloading the mechanics of identity

federation onto the cloud-based Access Control service, freeing the ISV from running its own on-

premises federation software.

 Suppose an enterprise wished to let software at its trading partners access one of its applications. It

could expose this ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŦǳƴŎǘƛƻƴǎ through SOAP or RESTful Web services, then register their

endpoints with Service Bus. Its trading partners could then use Service Bus to find these endpoints

and access the services. Since doing this doŜǎƴΩǘ ǊŜǉǳƛǊŜ ƻǇŜƴƛƴƎ ƴŜǿ ǇƻǊǘǎ ƛƴ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ

firewall, it reduces the risk of exposing the application. The organization might also use the Access

Control service, which is designed to work with Service Bus, to rationalize identity information sent to

the application by these partners.

 Perhaps the organization in the previous example needs to make sure that a business process

involving its trading partners must be executed consistently. To do this, it can use the Workflow

service to implement a WF-based application that carries out this process. The application can

communicate with partners using Service Bus and rely on the Access Control service to smooth out

differences in identity information.

As with Windows Azure, a browser-accessible portal is provided to let customers sign up for .NET Services

using ŀ ²ƛƴŘƻǿǎ [ƛǾŜ L5Φ aƛŎǊƻǎƻŦǘΩǎ goal with .NET Services is clear: providing useful cloud-based

infrastructure for distributed applications.

SQL SERVICES

One of the most attractive ways of using Internet-accessible servers is to handle data. The goal of SQL

Services is to address this area, offering a set of cloud-based services for storing and working with many

kinds of information. While Microsoft says that SQL Services will eventually include a range of data-

oriented capabilities, including reporting, data analytics, and others, the first SQL Services components to

appear are SQL Data Services and the άIǳǊƻƴέ Data Hub. Figure 4 illustrates this.

9

Figure 4: SQL Services provides data-oriented facilities in the cloud.

SQL Data Services, formerly known as SQL Server Data Services, provides a database management system

(DBMS) in the cloud. As the figure suggests, this technology lets on-premises and cloud applications store

relational and other types of data on Microsoft servers in Microsoft data centers. As with other cloud

technologies, an organization pays only for what it uses, increasing and decreasing usage (and cost) as the

ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ƴŜŜŘǎ ŎƘŀƴƎŜΦ ¦ǎƛƴƎ ŀ Ŏloud database also allows converting what would be capital

expenses, such as investments in disks and DBMS software, into operating expenses.

Unlike the Windows Azure storage service, SQL Data Services is built on Microsoft SQL Server. Still, in its

original 2008 CTP release, SQL Data Services ŘƛŘƴΩǘ expose a traditional relational view of data. Based on

customer feedback, Microsoft decided to change this. Going forward, SQL Data Services will support

relational data, offering a SQL Server environment in the cloud, complete with indexes, views, stored

procedures, triggers, and more. This data can be accessed using ADO.NET and other Windows data access

interfaces. In fact, applications that today access SQL Server locally will largely work unchanged with data

in SQL Data Services. Customers can also use on-premises software such as SQL Server Reporting Services

to work with this cloud-based information.

While applications can use SQL Data Services much as they do a local DBMS, the management

requirements are significantly reduced. Rather than worry about mechanics, such as monitoring disk

usage and ǎŜǊǾƛŎƛƴƎ ƭƻƎ ŦƛƭŜǎΣ ŀ {v[5ŀǘŀ {ŜǊǾƛŎŜǎ ŎǳǎǘƻƳŜǊ Ŏŀƴ ŦƻŎǳǎ ƻƴ ǿƘŀǘΩǎ ƛƳǇƻǊǘŀƴǘΥ ǘƘŜ ŘŀǘŀΦ

Microsoft handles the operational details. And like other components of the Azure Services Platform,

using SQL Data Services is straightforward: Just go to a Web portal and provide the necessary information.

The second SQL Services component announced so far ƛǎ ǘƘŜ άIǳǊƻƴέ 5ŀǘŀ IǳōΦ .ǳƛƭǘ ƻƴ ǘƘŜ aƛŎǊƻǎƻŦǘ

Sync Framework and SQL Data Services, this technology synchronizes relational data across various on-

premises DBMSs. The owners of that data can determine what should be synchronized, how conflicts

should be handled, and more.

10

Applications might rely on SQL Services in a variety of ways. Here are some examples:

 A Windows Azure application can store its data in SQL Data Services. While Windows Azure provides

ƛǘǎ ƻǿƴ ǎǘƻǊŀƎŜΣ ǊŜƭŀǘƛƻƴŀƭ ǘŀōƭŜǎ ŀǊŜƴΩǘ ŀƳƻƴƎ ǘƘŜ ƻǇǘƛƻƴǎ ƛǘ offers. Since many existing applications

use relational storage and many developers know how to work with it, a significant number of

Windows Azure applications are likely to rely on SQL Data Services to work with data in this familiar

way. To improve performance, customers can specify that a particular Windows Azure application

Ƴǳǎǘ Ǌǳƴ ƛƴ ǘƘŜ ǎŀƳŜ Řŀǘŀ ŎŜƴǘŜǊ ƛƴ ǿƘƛŎƘ {v[5ŀǘŀ {ŜǊǾƛŎŜǎ ǎǘƻǊŜǎ ǘƘŀǘ ŀǇǇƭƛŎŀǘƛƻƴΩǎ information.

 An application in a small business or a department of a big organization might rely on SQL Data

Services. Rather than storing its data in a SQL Server or Access database running on a computer under

ǎƻƳŜōƻŘȅΩǎ ŘŜǎƪΣ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ Ŏŀƴ ƛƴǎǘŜŀŘ ǘŀƪŜ ŀŘǾŀƴǘŀƎe of the reliability and availability of cloud

storage.

 Suppose a manufacturer wishes to make product information available to both its dealer network

and directly to customers. Putting this data in SQL Data Services would allow it to be accessed by

applications running at the dealers and by a customer-facing Web application run by the

manufacturer itself.

 An organization with a customer database replicated across different geographies might use the

άIǳǊƻƴέ 5ŀǘŀ Iǳō ǘƻ ƪŜŜǇ ǘƘŜǎŜ ǊŜǇƭƛŎŀǎ ƛƴ ǎȅƴŎΦ tŜǊƘŀǇǎ each geography needs its own copy of the

data for performance or to ensure availability or for some other reason. Automatic synchronization

can make this necessary distribution significantly less painful.

²ƘŜǘƘŜǊ ƛǘΩǎ ŦƻǊ supporting a Windows Azure application, making data more accessible, keeping that data

synchronized, or other reasons, data services in the cloud can be attractive. As new technologies become

available under the SQL Services umbrella, organizations will have the option to use the cloud for more

and more data-oriented tasks.

LIVE SERVICES

While the idea of cloud platforms is relatively new, the Internet is not. Hundreds of millions of people

around the world use it every day. To help them do this, Microsoft provides an expanding group of

Internet applications, including the Windows Live family and others. These applications let people send

instant messages, store their contact information, search, get directions, and do other useful things.

All of these applications store data. Some of that data, such as contacts, varies with each user. Others, like

mapping and search information, doesƴΩǘτwe all use the same underlying information. In either case,

why not make this data available to other applications? While controls are requiredτfreely exposing

ŜǾŜǊȅƻƴŜΩs personal information ƛǎƴΩǘ ŀ ƎƻƻŘ ƛŘŜŀτletting applications use this information can make

sense.

To allow this, Microsoft has wrapped this diverse set of resources into a group of Live Services. Existing

Microsoft applications, such as the Windows Live family, rely on Live Services to store and manage their

information. To let new applications access this information, Microsoft provides the Live Framework.

Figure 5 illustrates some of ǘƘŜ CǊŀƳŜǿƻǊƪΩǎ most important aspects.

11

Figure 5: The Live Framework lets applications access Live Services data, optionally synchronizing that

data across desktops and devices.

The fundamental component in the Live Framework is the Live Operating Environment. As the figure

shows, this component runs in the cloud, and applications use it to access Live Services data. Data access

through the Live Operating Environment relies on HTTP, which means that applications written using the

.NET Framework, JavaScript, Java, or any other language can use Live Services data. Information in Live

Services can also be accessed as an Atom or RSS feed, letting an application learn about changes to this

data. And to set up and manage the Live Services her application needs, a developer can use the browser-

based Live Services Developer Portal.

Figure 5 shows another aspect of the Live Framework: The Live Operating Environment can also live on

desktop systems running Windows Vista, Windows XP, or Macintosh OS X, and on Windows Mobile 6

devices. To use this option, a user groups his ǎȅǎǘŜƳǎ ƛƴǘƻ ǿƘŀǘΩǎ ƪƴƻǿƴ ŀǎ ŀ mesh. For example, you

might create a mesh that contains your desktop computer, your laptop, and your mobile phone. Each of

these systems runs an instance of the Live Operating Environment.

A fundamental characteristic of every mesh is that the Live Operating Environment can synchronize data

across all of ǘƘŜ ƳŜǎƘΩǎ systems. Users and applications can indicate what types of data should be kept in

sync, and the Live Operating Environment will automatically update all desktops, laptops, and devices in

the mesh with changes made to that data on any of them. ό¦ƴƭƛƪŜ ǘƘŜ άIǳǊƻƴέ 5ŀǘŀ IǳōΣ ƘƻǿŜǾŜǊΣ ǘƘƛǎ

ǎȅƴŎƘǊƻƴƛȊŀǘƛƻƴ ƛǎƴΩǘ ŦƻŎǳǎŜŘ ƻƴ data in a relational DBMS.) And since the cloud is part of every ǳǎŜǊΩǎ

meshτit acts like a special deviceτthis includes Live Services data. For example, if a user has entries

maintained in the contacts database used by Windows Live Hotmail, Windows Live Messenger, Windows

Live Contacts, and other applications, this data is automatically kept in sync on every device in his mesh.

12

The Live Operating Environment also allows a user to expose data from his mesh to other users, letting

him selectively share this information.

As Figure 5 shows, an application can access mesh data through either the local instance of the Live

Operating Environment or the cloud instance. In both cases, access is accomplished in the same way:

through HTTP requests. ¢Ƙƛǎ ǎȅƳƳŜǘǊȅ ƭŜǘǎ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ǿƻǊƪ ƛŘŜƴǘƛŎŀƭƭȅ ǿƘŜǘƘŜǊ ƛǘΩǎ ŎƻƴƴŜŎǘŜŘ ǘƻ ǘƘŜ

cloud or notτǘƘŜ ǎŀƳŜ Řŀǘŀ ƛǎ ŀǾŀƛƭŀōƭŜΣ ŀƴŘ ƛǘΩǎ ŀŎŎŜǎǎŜŘ ƛƴ ǘƘŜ ǎŀƳŜ ǿŀȅΦ

Any application, whether ƛǘΩǎ running on Windows or some other operating system, can access Live

Services data in the cloud via the Live Operating Environment. If the application is running on a system

ǘƘŀǘΩǎ ǇŀǊǘ ƻŦ ŀ ƳŜǎƘΣ ƛǘ ŀƭǎƻ Ƙŀǎ ǘƘŜ ƻǇǘƛƻƴ ƻŦ using the Live Operating Environment to access a local copy

of that Live Services data, as just describedΦ ¢ƘŜǊŜΩǎ ŀƭǎƻ ŀ ǘƘƛǊŘ ǇƻǎǎƛōƛƭƛǘȅΣ ƘƻǿŜǾŜǊΥ ! ŘŜǾŜƭƻǇŜǊ Ŏŀƴ

ŎǊŜŀǘŜ ǿƘŀǘΩǎ ŎŀƭƭŜŘ ŀ mesh-enabled Web application. This style of application is built using a multi-

platform technology such as Microsoft Silverlight, and it accesses data through the Live Operating

Environment. Because of these restrictions, a mesh-enabled application can potentially execute on any

ƳŀŎƘƛƴŜ ƛƴ ŀ ǳǎŜǊΩǎ ƳŜǎƘτa Windows machine, a Macintosh, or a Windows Mobile deviceτand it always

has access to the same (synchronized) data. To help users find these applications, the Live Framework

environment provides a cloud-based application catalog for mesh-enabled Web applications. A user can

browse this catalog, choose an application, then install it. And to help their creators build a business from

their work, Microsoft plans to provide built-in support for displaying advertising in these applications.

The Live Framework offers a diverse set of functions that can be used in a variety of different ways. Here

are a few examples:

 ! WŀǾŀ ŀǇǇƭƛŎŀǘƛƻƴ ǊǳƴƴƛƴƎ ƻƴ [ƛƴǳȄ ŎƻǳƭŘ ǊŜƭȅ ƻƴ ǘƘŜ [ƛǾŜ CǊŀƳŜǿƻǊƪ ǘƻ ŀŎŎŜǎǎ ŀ ǳǎŜǊΩǎ ŎƻƴǘŀŎǘǎ

information. The application is unaware that the technology used to expose this information is the

Live Framework; all it sees is a consistent HTTP interface to the ǳǎŜǊΩǎ ŘŀǘŀΦ

 A .NET Framework application might require its user to create a mesh, then use the Live Framework

as a data caching and synchronization service. When the machine this application runs on is

connected to the Internet, the application accesses a copy of its data in the cloud. When the machine

is disconnectedτƳŀȅōŜ ƛǘΩǎ ǊǳƴƴƛƴƎ ƻƴ ŀ ƭŀǇǘƻǇ ǘƘŀǘΩǎ ōŜƛƴƎ ǳǎŜŘ ƻƴ ŀƴ ŀƛǊǇƭŀƴŜτthe application

accesses a local copy of the same data. Changes made to any copy of the data are propagated by the

Live Operating Environment.

 An ISV can create a mesh-enabled Web application that lets people keep track of what their friends

are doing. This application, which can run unchanged on all of its ǳǎŜǊΩǎ ǎȅǎǘŜƳǎΣ exploits several

aspects of the Live Framework that support social applications. Because the Live Framework can

ŜȄǇƻǎŜ ƛƴŦƻǊƳŀǘƛƻƴ ƛƴ ŀ ǳǎŜǊΩǎ ƳŜǎƘ ŀǎ ŀ ŦŜŜŘΣ for example, the application can track updates from

ŀƴȅ ƻŦ ǘƘŜ ǳǎŜǊΩǎ ŦǊƛŜƴŘǎΦ Because the Live Framework provides a delivery mechanism for mesh-

enabled Web apps, viral distribution is possible, with each user inviting friends to use the application.

And because the mesh ŀǳǘƻƳŀǘƛŎŀƭƭȅ ƛƴŎƭǳŘŜǎ ŀ ǳǎŜǊΩǎ Live Services contacts, the user can ask the

application to invite friends by name, letting the application contact them directly.

The Live Framework provides a straightforward way to access Live Services data όŀƴŘ ŘƻƴΩǘ ōŜ ƳƛǎƭŜŘ ōȅ

the simple contacts example used hereτǘƘŜǊŜΩǎ ƭƻǘǎ ƳƻǊŜ in Live Services). Its data synchronization

functions can also be applied in a variety of applications. For applications that need what it provides, this

platform offers a unique set of supporting functions.

13

A CLOSER LOOK AT THE TECHNOLOGIES

Having a broad understanding of the Azure Services Platform is an important first step. Getting a deeper

understanding of each technology is also useful, however. This section takes a slightly more in-depth look

at each member of the family.

WINDOWS AZURE

Windows Azure does two main things: It runs applications and it stores their data. Accordingly, this

section is divided into two parts, one for each of these areas. How these two things are managed is also

important, and so this description looks at this part of the story as well.

Running Applications

On Windows Azure, an application typically has multiple instances, each running a copy of all or part of

ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŎƻŘŜ. Each of these instances runs in its own virtual machine (VM). These VMs run 64-bit

²ƛƴŘƻǿǎ {ŜǊǾŜǊ нллуΣ ŀƴŘ ǘƘŜȅΩǊe provided by a ƘȅǇŜǊǾƛǎƻǊ ǘƘŀǘΩǎ specifically designed for use in the

cloud.

Yet a developer ŘƻŜǎƴΩǘ supply his own VM image for Windows Azure to run, nor does he need to worry

about maintaining a copy of the Windows operating system. Instead, the CTP version lets a developer

create applications using Web role instances and/or Worker role instances. Figure 6 shows how this looks.

Figure 6: In the CTP version, Windows Azure applications can consist of Web role instances and Worker

role instances, with each instance running in its own virtual machine.

14

As its name suggests, each Web role instance accepts incoming HTTP (or HTTPS) requests via Internet

Information Services (IIS) 7. A Web role can be implemented using ASP.NET, WCF, or another technology

that works with IIS. As Figure 6 shows, Windows Azure provides built-in load balancing to spread requests

across Web role instances that are part of the same application.

A Worker role instance, by contrast, cannot accept requests directly from the outside worldτƛǘΩǎ ƴƻǘ

allowed to have any incoming network connectionsΣ ŀƴŘ LL{ ƛǎƴΩǘ ǊǳƴƴƛƴƎ ƛƴ ƛǘǎ ±a. Instead, it typically

gets its input via a queue in Windows Azure storage. The messages in this queue might come from a Web

role instance, an on-premises application, or something else. Wherever its input comes from, a Worker

role instance can send output to another queue or to the outside worldτoutgoing network connections

are allowed. And unlike a Web role instance, which is created to handle incoming HTTP requests, a

Worker role instance is a batch job. Befitting this generality, a Worker role can be implemented using any

Windows technology with a main() method.

Whether it runs a Web role instance or a Worker role instance, each VM also contains a Windows Azure

agent that allows the application to interact with the Windows Azure fabric, as Figure 6 shows. The agent

exposes a Windows Azure-defined API that lets the instance write to a Windows Azure-maintained log,

send alerts to its owner via the Windows Azure fabric, and more.

While this might change over time, Windows AzureΩǎ ƛƴƛǘƛŀƭ ǊŜƭŜŀǎŜ Ƴŀƛƴǘŀƛƴǎ ŀ ƻƴŜ-to-one relationship

between a VM and a physical processor core. Because of this, the performance of each application can be

guaranteedτeach Web role instance and Worker role instance has its own dedicated processor core. To

ƛƴŎǊŜŀǎŜ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǇŜǊŦƻǊƳŀƴŎŜΣ ƛǘǎ ƻǿƴŜǊ Ŏŀƴ increase the number of running instances specified

ƛƴ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŦƛƭŜ. The Windows Azure fabric will then spin up new VMs, assign them

to cores, and start running more instances of this application. The fabric also detects when a Web role or

Worker role instance has failed, then starts a new one.

Notice what this implies: To be scalable, Windows Azure Web role instances must be stateless. Any client-

specific state should be written to Windows Azure storage, sent to SQL Data Services, or passed back to

the client in a cookie. Web role statelessness is also all but mandated by Windows AzureΩǎ ōǳƛƭǘ-in load

balancer. Because it ŘƻŜǎƴΩǘ ŀƭƭƻǿ ŎǊŜŀǘƛƴƎ ŀƴ ŀŦŦƛƴƛǘȅ ǿƛǘƘ ŀ ǇŀǊǘƛŎǳƭŀǊ ²Ŝō ǊƻƭŜ ƛƴǎǘŀƴŎŜΣ ǘƘŜǊŜΩǎ ƴƻ ǿŀȅ

to guarantee that multiple requests from the same user will be sent to the same instance.

Both Web roles and Worker roles are implemented using standard Windows technologies. Yet moving

existing applications to Windows Azure might require a few changes. For one thing, access to Windows

Azure storage uses ADO.NET Data ServicesΣ ŀ ǊŜƭŀǘƛǾŜƭȅ ƴŜǿ ǘŜŎƘƴƻƭƻƎȅ ǘƘŀǘ ƛǎƴΩǘ ȅŜǘ ǳōƛǉǳƛǘƻǳǎ ƛƴ on-

premises applications. (A Windows Azure application can also use standard ADO.NET to access the

relational storage provided by SQL Data Services, however, which makes it easier to move an existing

application to this cloud platform.) Also, Worker role instances typically rely on queues in Windows Azure

ǎǘƻǊŀƎŜ ŦƻǊ ǘƘŜƛǊ ƛƴǇǳǘΣ ŀƴ ŀōǎǘǊŀŎǘƛƻƴ ǘƘŀǘΩǎ ƴƻǘ ŀǾŀƛƭŀōƭŜ ƛƴ ƻƴ-premises Windows environments. In the

main, however, the world an application sees running on Windows Azure is much like what it sees on any

other Windows Server 2008 system.

For developers, building a Windows Azure application in the CTP version looks much like building a

traditional Windows application. Microsoft provides Visual Studio 2008 project templates for creating

Windows Azure Web roles, Worker roles, and combinations of the two. Developers are free to use any

Windows programming ƭŀƴƎǳŀƎŜ όŀƭǘƘƻǳƎƘ ƛǘΩǎ ŦŀƛǊ ǘƻ ǎŀȅ ǘƘŀǘ aƛŎǊƻǎƻŦǘΩǎ ƛƴƛǘƛŀƭ ŦƻŎǳǎ for Windows Azure

has been on C#). Also, the Windows Azure software development kit includes a version of the Windows

15

Azure ŜƴǾƛǊƻƴƳŜƴǘ ǘƘŀǘ Ǌǳƴǎ ƻƴ ǘƘŜ ŘŜǾŜƭƻǇŜǊΩǎ ƳŀŎƘƛƴŜΦ Known as the Windows Azure Development

Fabric, it includes Windows Azure storage, a Windows Azure agent, and everything else seen by an

application running in the cloud. A developer can create and debug his application using this local

simulacrum, then deploy the app to Windows Azure in the cloud when ƛǘΩǎ ready. Still, some things really

are different in the cloud. LǘΩǎ ƴƻǘ ǇƻǎǎƛōƭŜ ǘƻ ŀǘǘŀŎƘ ŀ ŘŜōǳƎƎŜǊ ǘƻ ŀ ŎƭƻǳŘ-based application, for example,

and so debugging cloud applications relies primarily on writing to a Windows Azure-maintained log via the

Windows Azure agent.

Windows Azure also provides other services for developers. For example, a Windows Azure application

can send an alert string through the Windows Azure agent, and Windows Azure will forward that alert via

email, instant messaging, or some other mechanism to its specified recipient. If desired, the Windows

Azure fabric can itself detect an application failure and send an alert. The Windows Azure platform also

ǇǊƻǾƛŘŜǎ ŘŜǘŀƛƭŜŘ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǊŜǎƻǳǊŎŜ ŎƻƴǎǳƳǇǘƛƻƴΣ ƛƴŎƭǳŘƛƴƎ ǇǊƻŎŜǎǎƻǊ time,

incoming and outgoing bandwidth, and storage.

Accessing Data

Applications work with data in many different ways. Sometimes, all ǘƘŀǘΩǎ required are simple blobs, while

other situations call for a more structured way to store information. And ƛƴ ǎƻƳŜ ŎŀǎŜǎΣ ŀƭƭ ǘƘŀǘΩǎ really

needed is a way to exchange data between different parts of an application. Windows Azure storage

addresses all three of these requirements, as Figure 7 shows.

Figure 7: Windows Azure allows storing data in blobs, tables, and queues, all accessed in a RESTful style

via HTTP or HTTPS.

16

The simplest way to store data in Windows Azure storage is to use blobs. As Figure 7 suggests, ǘƘŜǊŜΩǎ ŀ

simple hierarchy: A storage account can have one or more containers, each of which holds one or more

blobs. Blobs can be bigτup to 50 gigabytes eachτand to make transferring large blobs more efficient,

each one can be subdivided into blocks. If a failure occurs, retransmission can resume with the most

recent block rather than sending the entire blob again. Blobs can also have associated metadata, such as

information about where a JPEG photograph was taken or who the composer is for an MP3 file.

.ƭƻōǎ ŀǊŜ Ƨǳǎǘ ǊƛƎƘǘ ŦƻǊ ǎƻƳŜ ƪƛƴŘǎ ƻŦ ŘŀǘŀΣ ōǳǘ ǘƘŜȅΩǊŜ ǘƻƻ ǳƴǎǘǊǳŎǘǳǊŜŘ ŦƻǊ Ƴŀƴȅ ǎƛǘǳŀǘƛƻƴǎΦ To allow

applications to work with data in a more fine-grained way, Windows Azure ǎǘƻǊŀƎŜ ǇǊƻǾƛŘŜǎ ǘŀōƭŜǎΦ 5ƻƴΩǘ

be misled by the name: ¢ƘŜǎŜ ŀǊŜƴΩǘ ǊŜƭŀǘƛƻƴŀƭ ǘŀōƭŜǎΦ Lƴ ŦŀŎǘΣ ŜǾŜƴ ǘƘƻǳƎƘ ǘƘŜȅΩǊŜ ŎŀƭƭŜŘ άǘŀōƭŜǎέΣ ǘƘŜ

data they contain is actually stored in a simple hierarchy of entities with properties. A table has no

defined schema; instead, properties can have various types, such as int, string, Bool, or DateTime. And

rather than using SQL, an application can access ŀ ǘŀōƭŜΩǎ data using ADO.NET Data Services or LINQ. A

single table can be quite large, with billions of entities holding terabytes of data, and Windows Azure

storage can partition it across many servers if necessary to improve performance.

Blobs and tables are both focused on storing data. The third option in Windows Azure storage, queues,

has a quite different purpose. The primary role of queues is to provide a way for Web role instances to

communicate with Worker role instances. For example, a user might submit a request to perform some

compute-intensive task via a Web page implemented by a Windows Azure Web role. The Web role

instance that receives this request can write a message into a queue describing the work to be done. A

²ƻǊƪŜǊ ǊƻƭŜ ƛƴǎǘŀƴŎŜ ǘƘŀǘΩǎ ǿŀƛǘƛƴƎ ƻƴ ǘƘƛǎ ǉǳŜǳŜ Ŏŀƴ then read the message and carry out the task it

specifies. Any results can be returned via another queue or handled in some other way.

wŜƎŀǊŘƭŜǎǎ ƻŦ Ƙƻǿ ƛǘΩǎ ǎǘƻǊŜŘτin blobs, tables, or queuesτall data held in Windows Azure storage is

replicated three times. This ǊŜǇƭƛŎŀǘƛƻƴ ŀƭƭƻǿǎ Ŧŀǳƭǘ ǘƻƭŜǊŀƴŎŜΣ ǎƛƴŎŜ ƭƻǎƛƴƎ ŀ ŎƻǇȅ ƛǎƴΩǘ ŦŀǘŀƭΦ ¢ƘŜ ǎȅǎǘŜƳ

guarantees consistency, however, so an application that reads data it has just written will get what it

expects.

Windows Azure storage can be accessed either by a Windows Azure application or by an application

running somewhere else. In both cases, all three Windows Azure storage styles use the conventions of

REST to identify and expose data. Everything is named using URIs and accessed with standard HTTP

operations. A .NET client can also use ADO.NET Data Services and LINQ, but access to Windows Azure

storage from, say, a Java application can just use standard REST. For example, a blob can be read with an

HTTP GET against a URI formatted like this:

http://<StorageAccount>.blob.core.windows.net/<Container>/<BlobName>

<StorageAccount> is an identifier assigned when a new storage account is created, and it uniquely

identifies the blobs, tables, and queues created using this account. <Container> and <BlobName> are just

the names of the container and blob that this request is accessing.

Similarly, a query against a particular table is expressed as an HTTP GET against a URI formatted like this:

http://<StorageAccount>.table.core.windows.net/<TableName>?$filter=<Query>

Here, <TableName> specifies the table being queried, while <Query> contains the query to be executed

against this table.

17

Even queues can be accessed by both Windows Azure applications and external applications by issuing an

HTTP GET against a URI formatted like this:

http://<StorageAccount>.queue.core.windows.net/<QueueName>

The Windows Azure platform charges independently for compute and storage resources. This means that

an on-premises application could use just Windows Azure storage, accessing its data in the RESTful way

just described. Still, ƛǘΩǎ ŦŀƛǊ ǘƻ ǎŀȅ ǘƘŀǘ the primary purpose of Windows Azure storage is to maintain data

used by Azure applications. And because that data can be accessed directly from non-Windows Azure

applications, it remains available even if the Windows Azure application that uses it ƛǎƴΩǘ Ǌǳƴƴing.

The goal of application platforms, whether on-premises or in the cloud, is to support applications and

data. Windows Azure provides a home for both of these things. Going forward, expect to see a share of

what would have been on-premises Windows applications instead running on this new cloud platform.

.NET SERVICES

Running applications in the cloud is useful, but so is providing cloud-based infrastructure services. These

services can be used by either on-premises or cloud-based applications, and they can address problems

ǘƘŀǘ ŎŀƴΩǘ ōŜ ǎƻƭǾŜŘ ŀǎ ǿŜƭƭ ƛƴ ŀƴȅ ƻǘƘŜǊ ǿŀȅΦ This section takes a closer look at aƛŎǊƻǎƻŦǘΩǎ ƻŦŦŜǊƛƴƎǎ ƛƴ

this area: the .NET Access Control Service, .NET Service Bus, and the .NET Workflow Service, known

collectively as .NET Services.

Access Control Service

²ƻǊƪƛƴƎ ǿƛǘƘ ƛŘŜƴǘƛǘȅ ƛǎ ŀ ŦǳƴŘŀƳŜƴǘŀƭ ǇŀǊǘ ƻŦ Ƴƻǎǘ ŘƛǎǘǊƛōǳǘŜŘ ŀǇǇƭƛŎŀǘƛƻƴǎΦ .ŀǎŜŘ ƻƴ ŀ ǳǎŜǊΩǎ ƛŘŜƴǘƛǘȅ

information, an application makes decisions about what that user is allowed to do. To convey this

information, applications can rely on tokens defined using the Security Assertion Markup Language

(SAML). A SAML token contains claims, each of which carries some piece of information about a user. One

claim might contain her name, another might indicate her role, such as manager, while a third contains

her email address. Tokens are created by software known as a security token service (STS), which digitally

signs each one to verify its source.

Once a client (such as a Web browser) has a token for its user, it can present the token to an application.

The applƛŎŀǘƛƻƴ ǘƘŜƴ ǳǎŜǎ ǘƘŜ ǘƻƪŜƴΩǎ ŎƭŀƛƳǎ ǘƻ ŘŜŎƛŘŜ ǿƘŀǘ ǘƘƛǎ ǳǎŜǊ ƛǎ ŀƭƭƻǿŜŘ ǘƻ ŘƻΦ ¢ƘŜǊŜ ŀǊŜ ŀ ŎƻǳǇƭŜ

of possible problems, however:

 ²Ƙŀǘ ƛŦ ǘƘŜ ǘƻƪŜƴ ŘƻŜǎƴΩǘ Ŏƻƴǘŀƛƴ ǘƘŜ ŎƭŀƛƳǎ ǘƘƛǎ ŀǇǇƭƛŎŀǘƛƻƴ ƴŜŜŘǎΚ ²ƛǘƘ ŎƭŀƛƳǎ-based identity,

every application is free to define the set of claims that its users must present. Yet the STS that

created this token might not have put into it exactly what this application requires.

 ²Ƙŀǘ ƛŦ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ŘƻŜǎƴΩǘ ǘǊǳǎǘ ǘƘŜ {¢{ ǘƘŀǘ ƛǎǎǳŜŘ ǘƘƛǎ ǘƻƪŜƴΚ !ƴ ŀǇǇƭƛŎŀǘƛƻƴ ŎŀƴΩǘ ŀŎŎŜǇǘ

tokens issued by just any STS. Instead, the application typically has access to a list of certificates for

trusted STSs, allowing it to validate the signatures on tokens they create. Only tokens from these

trusted STSs will be accepted.

Inserting another STS into the process can solve both problems. To make sure that tokens contain the

right claims, this extra STS performs claims transformation. The STS can contain rules that define how

18

input and output claims should be related, then use those rules to generate a new token containing the

exact claims an application requires. To address the second problem, commonly called identity

federation, requires that the application trust the new STS. It also requires establishing a trust relationship

between this new STS and the one that generated the token the STS received.

Adding another STS allows claims transformation and identity federation, both useful things. But where

ǎƘƻǳƭŘ ǘƘƛǎ {¢{ ǊǳƴΚ LǘΩǎ ǇƻǎǎƛōƭŜ ǘƻ ǳǎŜ ŀƴ {¢{ ǘƘŀǘ Ǌǳƴǎ ƛƴǎƛŘŜ ŀƴ ƻǊƎŀƴƛȊŀǘƛƻƴΣ ŀƴ ƻǇǘƛƻƴ ǘƘŀǘΩǎ ǇǊƻǾƛŘŜŘ

by several vendors today. Yet why not run an STS in the cloud? This would make it accessible to users and

applications in any organization. It also places the burden of running and managing the STS on a service

provider.

This is exactly what the Access Control Service offersΥ LǘΩǎ ŀƴ {¢{ ƛƴ ǘƘŜ ŎƭƻǳŘ. To see how this STS might

be used, suppose an ISV provides an Internet-accessible application that can be used by people in many

different organizations. While all of those organizations might be able to provide SAML tokens for their

users, these tokens are unlikely to contain the exact set of claims this application needs. Figure 8

illustrates how the Access Control Service can address these challenges.

Figure 8: The Access Control Service provides rules-based claims transformation and identity federation.

CƛǊǎǘΣ ǘƘŜ ǳǎŜǊΩǎ ŀǇǇƭƛŎŀǘƛƻƴ όǿƘƛŎƘ ƛƴ ǘƘƛǎ ŜȄŀƳǇƭŜ ƛǎ ŀ ²Ŝō ōǊƻǿǎŜǊΣ ōǳǘ ŎƻǳƭŘ also be a WCF client or

ǎƻƳŜǘƘƛƴƎ ŜƭǎŜύ ǎŜƴŘǎ ǘƘŜ ǳǎŜǊΩǎ {!a[ǘƻƪŜƴ ǘƻ the Access Control Service (step 1). This service validates

the signature on the token, verifying that it was created by an STS the service trusts. The service then

creates and signs a new SAML token containing exactly the claims this application requires (step 2).

To do this, the Access Control ServiceΩǎ {¢{ relies on rules defined by the owner of the application that the

user is trying to access. For example, suppose the application grants specific access rights to any user who

is a manager in her company. While each company might include a claim in its token indicating that a user

19

ƛǎ ŀ ƳŀƴŀƎŜǊΣ ǘƘŜȅΩƭƭ ƭƛƪŜƭȅ ŀƭƭ ōŜ ŘƛŦŦŜǊŜƴǘΦ hƴŜ ŎƻƳǇŀƴȅ ƳƛƎƘǘ ǳǎŜ ǘƘŜ ǎǘǊƛƴƎ άaŀƴŀƎŜǊέΣ ŀƴƻǘƘŜǊ ǘƘŜ

ǎǘǊƛƴƎ ά{ǳǇŜǊǾƛǎƻǊέΣ ŀƴŘ ŀ ǘƘƛǊŘ ŀƴ ƛƴǘŜƎŜǊ ŎƻŘŜΦ ¢ƻ ƘŜƭǇ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ŘŜŀƭ ǿƛǘƘ ǘƘƛǎ ŘƛǾŜǊǎƛǘȅΣ ƛǘǎ ƻǿƴŜǊ

ŎƻǳƭŘ ŘŜŦƛƴŜ ǊǳƭŜǎ ƛƴ !ŎŎŜǎǎ /ƻƴǘǊƻƭ ǘƘŀǘ ŎƻƴǾŜǊǘ ŀƭƭ ǘƘǊŜŜ ƻŦ ǘƘŜǎŜ ŎƭŀƛƳǎ ǘƻ ǘƘŜ ŎƻƳƳƻƴ ǎǘǊƛƴƎ ά5ŜŎƛǎƛƻƴ

aŀƪŜǊέΦ ¢ƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƭƛŦŜ ƛǎ ƴƻǿ ǎƛƳǇƭŜǊΣ ǎƛƴŎŜ ǘƘe work of claims transformation is done for it.

hƴŎŜ ƛǘΩǎ ōŜŜƴ ŎǊŜŀǘŜŘΣ ǘƘŜ {¢{ ƛƴ the Access Control Service returns this new token to the client (step 3)

who then passes it on to the application (step 4). The application validates the signature on the token,

making sure that it really was issued by the Access Control Service STS. Note that while the ǎŜǊǾƛŎŜΩǎ STS

must maintain a trust relationship with the STS of each customer organization, the application itself need

trust only the Access Control Service STS. hƴŎŜ ƛǘΩǎ ŎŜǊǘŀƛƴ ƻŦ ǘƘƛǎ ǘƻƪŜƴΩǎ ǇǊƻǾŜƴŀƴŎŜΣ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ Ŏŀƴ

use the claims it contains to decide what this user is allowed to do (step 5).

Another way to use the Access Control Service is implicit in its name: An application can effectively offload

to the service decisions about what kind of access each user is allowed. For example, suppose access to a

certain function of an application requires the user to present a particular claim. The rules in the Access

Control Service for the application could be defined to give this claim only to users that present other

required claims, such as one of the manager claims described earlier. When the application receives a

ǳǎŜǊΩǎ ǘƻƪŜƴΣ ƛǘ Ŏŀƴ ƎǊŀƴǘ ƻǊ ŘŜƴȅ ŀŎŎŜǎǎ ōŀǎŜŘ ƻƴ ǘƘŜ ǇǊŜǎŜƴŎŜ ƻŦ ǘƘƛǎ ŎƭŀƛƳτthe decision was effectively

made for it by the Access Control Service. Doing this lets an administrator define access control rules in

one common place, and it can also help in sharing access control rules across multiple applications.

All communication with the Access Control Service relies on standard protocols such as WS-Trust and WS-

Federation. This makes the service accessible from any kind of application on any platform. And to define

rules, the service provides both a browser-based GUI and a client API for programmatic access.

Claims-based identity is on its way to becoming the standard approach for distributed environments. By

providing an STS in the cloud, complete with rules-based claims transformation, the Access Control

Service makes this modern approach to identity more attractive.

Service Bus

{ǳǇǇƻǎŜ ȅƻǳ ƘŀǾŜ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ǊǳƴƴƛƴƎ ƛƴǎƛŘŜ ȅƻǳǊ ƻǊƎŀƴƛȊŀǘƛƻƴ ǘƘŀǘ ȅƻǳΩŘ ƭƛƪŜ ǘƻ ŜȄǇƻǎŜ ǘƻ software in

other organizations through the Internet. At first glance, this can seem like a simple problem. Assuming

your application provides its functionality as Web services (either RESTful or SOAP-based), you can just

make those Web services visible to the outside world. When you actually try to do this, though, some

problems appear.

 First, how can applications in other organizations (or even in other parts of your own) find endpoints they

can connect to for your services? It would be nice to have some kind of registry where others could locate

ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΦ !ƴŘ ƻƴŎŜ ǘƘŜȅΩve found it, how can requests from software in other organizations get

through to your application? Network address translation (NAT) is very common, so an application

frequently ŘƻŜǎƴΩǘ ƘŀǾŜ ŀ ŦƛȄŜŘ Lt ŀŘŘǊŜǎǎ ǘƻ ŜȄǇƻǎŜ externallyΦ !ƴŘ ŜǾŜƴ ƛŦ b!¢ ƛǎƴΩǘ ōŜƛƴƎ ǳǎŜŘΣ Ƙƻǿ Ŏŀƴ

requests get through ȅƻǳǊ ŦƛǊŜǿŀƭƭΚ LǘΩǎ ǇƻǎǎƛōƭŜ ǘƻ ƻǇŜƴ firewall ports to allow access to your application,

but most network administrators frown on this.

The Service Bus addresses these challenges. Figure 9 shows how.

20

Figure 9: The Service Bus allows an application to register endpoints, then have other applications

discover and use those endpoints to access its services.

To begin, your application registers one or more endpoints with the Service Bus (step 1), which exposes

them on your behalf. The Service Bus assignǎ ȅƻǳǊ ƻǊƎŀƴƛȊŀǘƛƻƴ ŀ ¦wL ǊƻƻǘΣ ōŜƭƻǿ ǿƘƛŎƘ ȅƻǳΩǊŜ ŦǊŜŜ ǘƻ

create any naming hierarchy you like. This allows your endpoints to be assigned specific, discoverable

URIs. Your application must also open a connection with the Service Bus for each endpoint it exposes. The

Service Bus holds this connection open, which solves two problems. First, NAT is no longer an issue, since

traffic on the open connection with the Service Bus will always be routed to your application. Second,

because the connection was initiatŜŘ ŦǊƻƳ ƛƴǎƛŘŜ ǘƘŜ ŦƛǊŜǿŀƭƭΣ ǘƘŜǊŜΩǎ ƴƻ ǇǊƻōƭŜƳ ǇŀǎǎƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ

back to the applicationτthe firewall ǿƻƴΩǘ block this traffic.

When an application in some other organization (or even a different part of your own) wishes to access

your application, it contacts the Service Bus registry (step 2). This request uses the Atom Publishing

Protocol, and it returns an AtomPub ǎŜǊǾƛŎŜ ŘƻŎǳƳŜƴǘ ǿƛǘƘ ǊŜŦŜǊŜƴŎŜǎ ǘƻ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŜƴŘǇƻƛƴǘǎΦ

Once it has these, it can invoke services offered through these endpoints (step 3). Each request is received

by the Service Bus, then passed on to your application, with responses traveling the reverse path. And

ŀƭǘƘƻǳƎƘ ƛǘΩǎ ƴƻǘ ǎƘƻǿƴ ƛƴ ǘƘŜ ŦƛƎǳǊŜΣ the Service Bus establishes a direct connection between an

application and its client whenever possible, making their communication more efficient.

Service Bus also allows communication via queues. This lets a client application send messages even when

the listening ŀǇǇƭƛŎŀǘƛƻƴ ƛǎƴΩǘ ŀǾŀƛƭŀōƭŜ; Service Bus can queue the messages for up to a week waiting for

the listener to receive ǘƘŜƳΦ LǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ŦƻǊ ŀ ŎƭƛŜƴǘ ǘƻ ǎŜƴŘ ƳŜǎǎŀƎŜǎ ǘƻ ŀ {ŜǊǾƛŎŜ .ǳǎ ǉǳŜǳŜΣ ǘƘŜƴ

have those messages received by more than one listener.

21

Along with making communication easier, the Service Bus can also improve security. Because clients now

see only an IP address provided by the {ŜǊǾƛŎŜ .ǳǎΣ ǘƘŜǊŜΩǎ ƴƻ ƴŜŜŘ ǘƻ ŜȄǇƻǎŜ ŀƴȅ Lt ŀŘŘǊŜǎǎŜǎ ŦǊƻƳ

within your organization. This effectively makes your application anonymous, since the outside world

ŎŀƴΩǘ ǎŜŜ ƛǘǎ Lt ŀŘŘǊŜǎǎΦ The Service Bus acts as an external DMZ, providing a layer of indirection to deter

attackers. And finally, the Service Bus is designed to be used with the Access Control Service, allowing

rules-based claims transformation. In fact, the Service Bus accepts only tokens issued by the Access

Control Service STS.

An application that wishes to expose its services via the Service Bus is typically implemented using WCF.

Clients can be built with WCF or other technologies, such as Java, and they can make requests via SOAP or

HTTP. Applications and their clients are also free to use their own security mechanisms, such as

encryption, to shield their communication from attackers and from the Service Bus itself.

Exposing ŀǇǇƭƛŎŀǘƛƻƴǎ ǘƻ ǘƘŜ ƻǳǘǎƛŘŜ ǿƻǊƭŘ ƛǎƴΩǘ ŀǎ ǎƛƳǇƭŜ ŀǎ ƛǘ ƳƛƎƘǘ ǎŜŜƳΦ ¢ƘŜ ƛƴǘŜƴǘ ƻŦ the Service Bus is

to make implementing this useful behavior as straightforward as possible.

Workflow Service

Windows Workflow Foundation is a general technology for creating workflow-based applications. One

classic scenario for workflow is controlling a long-running process, as is often done in enterprise

application integration. More generally, WF-based applications can be a good choice for coordinating

many kinds of work. Especially when the work being coordinated is located in different organizations,

running the controlling logic in the cloud can make sense.

The Workflow Service allows this. By providing a host process for WF 3.5-based applications, it lets

developers create workflows that run in the cloud. Figure 10 shows how this looks.

Figure 10: The Workflow Service allows creating WF-based applications that can communicate using

HTTP or the Service Bus.

22

Every WF workflow is implemented using some number of activities, shown in red in the figure. Each

activity performs a defined action, such as sending or receiving a message, implementing an If statement,

or controlling a While loop. WF provides a standard set of activities known as the Base Activity Library

(BAL), and the Workflow Service allows the applications it runs to use a subset of the BAL. The service also

provides several of its own activities. For example, the applications it hosts can communicate with other

software using either HTTP or the Service Bus, as Figure 10 shows, and so the Workflow Service provides

built-in activities for doing both. The Workflow Service also provides activities for working with XML

messages, a common requirement for application integration.

Running in the cloud brings some limitations, however. WF-based applications running in the Workflow

Service Ŏŀƴ ƻƴƭȅ ǳǎŜ ²CΩǎ ǎŜǉǳŜƴǘƛŀƭ ǿƻǊƪŦƭƻǿ ƳƻŘŜƭΣ ŦƻǊ ŜȄŀƳǇƭŜΦ !ƭǎƻΣ ǊǳƴƴƛƴƎ ŀǊōƛǘǊŀǊȅ ŎƻŘŜ ƛǎƴΩǘ

allowed, and so neither the .![Ωǎ /ƻŘŜ ŀŎǘƛǾƛǘȅ nor custom activities can be used.

To create applications for the Workflow Service, developers can use Visual StuŘƛƻΩǎ standard WF workflow

designer. hƴŎŜ ǘƘŜȅΩǊŜ ǿǊƛǘǘŜƴΣ WF-based applications can be deployed to the cloud using a browser-

based Workflow portal or programmatically using Workflow-provided APIs. Running workflows can also

be managed using either the portal or these APIs. And like the Service Bus, applications that interact with

the Workflow Service must first get a token from the Access Control ServiceτƛǘΩǎ ǘƘŜ ƻƴƭȅ ǘǊǳǎǘŜŘ {¢{.

WF-ōŀǎŜŘ ŀǇǇƭƛŎŀǘƛƻƴǎ ŀǊŜƴΩǘ ǘƘŜ ǊƛƎƘǘ ŀǇǇǊƻŀŎƘ ŦƻǊ ŜǾŜǊȅǘƘƛƴƎΦ ²ƘŜƴ ǘƘƛǎ ƪƛƴŘ ƻŦ ǎƻƭǳǘƛƻƴ ƛǎ ƴŜŜŘŜŘΣ

however, using a workflow Ŏŀƴ ƳŀƪŜ ŀ ŘŜǾŜƭƻǇŜǊΩǎ ƭƛŦŜ ƳǳŎƘ ŜŀǎƛŜǊΦ .ȅ ǇǊƻǾƛŘƛƴƎ ŀ manageable, scalable

way to host WF applications in the cloud, the Workflow Service extends the reach of this useful

technology.

SQL SERVICES

SQL Services is an umbrella name for a group of cloud-based technologies for working with relational and

other types of data. The first members of this family to appear are SQL Data Services ŀƴŘ ǘƘŜ άIǳǊƻƴέ

Data Hub. This section takes a closer look at each of these new technologies.

SQL Data Services

A DBMS in the cloud is attractive for many reasons. For some organizations, letting a specialized service

provider ensure reliability, handle back-ups, and perform other management functions makes sense. Data

in the cloud can also be accessed by applications running anywhere, even on mobile devices. And given

the economies of scale that a service provider enjoys, using a cloud database may well be cheaper than

doing it yourself. The goal of SQL Data Services is to provide all of these benefits. Figure 11 shows a simple

view of this technology.

23

Figure 11: Applications access data in SQL Data Services ǘƘǊƻǳƎƘ aƛŎǊƻǎƻŦǘΩǎ ¢5{ ǇǊƻǘƻŎƻƭ, allowing

them to use ADO.NET and other common data interfaces.

An application using SQL Data Services ƳƛƎƘǘ Ǌǳƴ ƻƴ ²ƛƴŘƻǿǎ !ȊǳǊŜΣ ƛƴ ŀƴ ŜƴǘŜǊǇǊƛǎŜΩǎ Řŀǘŀ ŎŜƴǘŜǊΣ on a

mobile device, or somewhere else. Wherever it runs, the application accesses data via a protocol called

Tabular Data Stream (TDS). This is the same protocol used to access a local SQL Server database, and so a

SQL Data Services application can use any existing SQL Server client library. The most important of these is

probably ADO.NET, but ODBC and others can also be used.

For the most part, an application using SQL Data Services sees a familiar SQL Server environment. A few

things are omitted, however, such as the SQL Common Language Runtime (CLR) and support for spatial

data. Also, ōŜŎŀǳǎŜ ŀŘƳƛƴƛǎǘǊŀǘƛƻƴ ƛǎ ƘŀƴŘƭŜŘ ōȅ aƛŎǊƻǎƻŦǘΣ ǘƘŜ ǎŜǊǾƛŎŜ ŘƻŜǎƴΩǘ ŜȄǇƻǎŜ physical

administrative functions. (A ŎǳǎǘƻƳŜǊ ŎŀƴΩt shut down the system, for example.) And ŀǎ ȅƻǳΩŘ ŜȄǇŜŎǘ ƛƴ ŀ

shared environment, a query can run for only a limited timeτno single request can take up more than a

pre-defined amount of resources.

Yet while the environment looks standard, the service an application gets is more robust than what a

single instance of SQL Server provides. As in Windows Azure storage, all data stored in SQL Data Services

is replicated three times. Also like Windows Azure storage, the service provides strong consistency: When

a write returns, all copies have been written. The goal is to provide reliable data storage even in the face

of system and network failures.

The current expectation is that the maximum size of a single database in SQL Data Services will be

between 5 and 10 gigabytes. An application whose data is within this limit can use just one database,

while an application with more data will need to create multiple databases. Figure 12 illustrates this idea.

24

Figure 12: An application can use a single database or multiple databases.

With a single database, an application sees one set of data, and so SQL queries can be used as usual

across all of this data. With multiple databases, however, the application must divide its data among

themΦ LƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ŎǳǎǘƻƳŜǊǎ ǿƘƻǎŜ ƴŀƳŜǎ ǎǘŀǊǘ ǿƛǘƘ ά!έ ƳƛƎƘǘ ōŜ ƛƴ ƻƴŜ database, for example,

ŎǳǎǘƻƳŜǊǎ ǿƘƻǎŜ ƴŀƳŜǎ ǎǘŀǊǘ ǿƛǘƘ ά.έ ƛƴ another, and so on. While each database exposes the usual

relational interface, the application can no longer issue a single SQL query that accesses all data in all

databases. Instead, applications that work with multiple databases will need to be aware of how that data

is divided.

In some cases, even applications with smaller amounts of data might choose to use multiple databases.

This approach allows parallel queries, for example, and so it can provide better performance in some

situations. Similarly, a multi-tenant application that provides services to different organizations might

choose to use multiple databases, perhaps assigning one to each organization.

Whether an application needs multiple databases or just one, SQL Data Services can help application

developers address a range of scenarios. WƘŀǘŜǾŜǊ ǇǊƻōƭŜƳ ƛǎ ōŜƛƴƎ ǎƻƭǾŜŘΣ ǘƘŜ ǘŜŎƘƴƻƭƻƎȅΩǎ

fundamental goal remains the same: to provide a familiar, reliable, and low-cost cloud database for all

kinds of applications.

 άIǳǊƻƴέ 5ŀǘŀ Hub

Ideally, data is kept in just one place. Realistically, though, ǘƘƛǎ ƻŦǘŜƴ ƛǎƴΩǘ ǇƻǎǎƛōƭŜΦ aŀƴȅ ƻǊƎŀƴƛȊŀǘƛƻƴǎ

have copies of the same data spread across different databases, often in different geographic locations.

Keeping that data in sync is challenging but necessary.

25

¢ƘŜ άIǳǊƻƴέ 5ŀta Hub addresses this problem. Built on the Microsoft Sync Framework and SQL Data

Services, it can synchronize relational data in multiple databases. Figure 13 shows the basics of this

technology.

Figure 13: The "Huron" Data Hub uses the Microsoft Sync Framework to synchronize data across SQL

Data Services and on-premises databases.

¢ƘŜ άIǳǊƻƴέ 5ŀǘŀ Iǳō ǿƛƭƭ ƛƴƛǘƛŀƭƭȅ ǎǳǇǇƻǊǘ {v[{ŜǊǾŜǊ and SQL Server Compact edition. The technology

also includes an SDK, however, allowing others to add support for more DBMSs. Whatever database

technologies are used, the Data Hub works in the same way: Data changes are synchronized first to SQL

Data Services, then to the DBMSs being synchronized. The technology provides a graphical interface that

lets users define which data should be synchronized across which databases.

Synchronization is multi-master, which means that changes can be made to any of the copies. The user

who sets up the synchronization can also define how conflicts should be handled. Options include making

the last write win, requiring that changes made to a specific database win, and more.

¢ƘŜ άIǳǊƻƴέ 5ŀǘŀ IǳōΣ ǿƻǊƪƛƴƎ ǿƛǘƘ {v[5ŀǘŀ {ŜǊǾƛŎŜǎΣ ŀŘŘǊŜǎǎŜǎ ŀƴ ƛƳǇƻǊǘŀƴǘ ǇǊƻōƭŜƳ ƛƴ Ƴŀƴȅ

organizations. As the SQL Services family expands, expect to see more cloud-based solutions to common

data-oriented problems.

26

LIVE SERVICES

What drives the creation of new application platforms? The answer is change: changes in hardware,

changes in software, and changes in how we use applications and data. Mobile phones have morphed into

computers, for example, and servers in the cloud have become big parts of our lives. Applications have

become more personal, as has the data we store in those applications. Combine these changes, and the

stage is set for a new kind of application platform.

Live Services and the Live Framework exemplify this. Applications can use the Live Framework to access

Live Services data, and they can also rely on the Live Framework to synchronize this data across desktops,

laptops, and devices. Figure 14 shows how Live Services and the Live Framework fit together.

Figure 14: The Live Framework lets applications access Live Services data and more.

Live Services is broken down into several different categories, as the figure shows. Each service allows

access to a particular set of resources, which can be user-ǎǇŜŎƛŦƛŎ ƻǊ ǎƘŀǊŜŘΦ CƻǊ ŜȄŀƳǇƭŜΣ ŀ ǳǎŜǊΩǎ ŎƻƴǘŀŎǘǎ

list is a resource provided by the Directory service, while his profile is a resource provided by the Storage

service. Both of these are user-specific services, since they expose Řŀǘŀ ǘƘŀǘΩǎ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ŀ ǇŀǊǘƛŎǳƭŀǊ

user. The Geospatial service provides resources that contain shared data, howeverτmaps and other

geographic informationτas does the Search service.

The data in Live Services is used by existing Microsoft applications in various ways, as the figure indicates.

A primary goal of the Live Framework is to make it easier to create new applications that use this data.

aƛŎǊƻǎƻŦǘΩǎ Live Mesh is one example of this, and ISVs and end users are free to build others. All of these

applications access data through the [ƛǾŜ CǊŀƳŜǿƻǊƪΩǎ primary component: the Live Operating

Environment. How this looks is described next.

27

Accessing Data

The simplest way to access Live Services data is directly through the Live Operating Environment. Figure

15 shows how this looks.

Figure 15: Because the Live Framework exposes Live Services data via HTTP, applications written using

many technologies can access it.

All of the resources provided by Live Servicesτboth user-centric and sharedτare named with URIs. To

access this information, an application can make RESTful requests using HTTP. Resources can also be

accessed via AtomPub or in other HTTP-based wŀȅǎΦ IƻǿŜǾŜǊ ƛǘΩǎ ŘƻƴŜΣ information can be transferred

using XML or JSON, with syndication data conveyed using RSS or Atom.

To allow a consistent approach to describing and naming Live Services data, the Live Framework defines a

resource model. This model specifies types and the allowed relationships among instances of those types,

along with a consistent URI naming scheme. Applications can also create custom types to store their own

kinds of information. The intent is to provide enough commonality to let applications discover and

navigate Live Services data while also giving application developers the flexibility they need to store

diverse information. And because each user has detailed control over exactly which of her resources are

exposed to wƘƛŎƘ ŀǇǇƭƛŎŀǘƛƻƴǎ ŀƴŘ ŦƻǊ Ƙƻǿ ƭƻƴƎΣ ƴƻ ƻƴŜΩǎ personal data is freely available.

LǘΩǎ ǿƻǊǘƘ ǇƻƛƴǘƛƴƎ ƻǳǘ ǘƘŀǘ ǘƘŜ Řŀǘŀ ǳǎŜŘ ōȅ aƛŎǊƻǎƻŦǘΩǎ [ƛǾŜ ŀǇǇƭƛŎŀǘƛƻƴǎ ƛǎ ŜȄǇƻǎŜŘ ǘƻŘŀȅ ǘƘǊƻǳƎƘ

existing Live Services APIs (sometimes called the Windows Live Platform). These APIs vary significantly

across applications, however. By providing common, HTTP-based access to all of this information, the Live

Framework will replace this older approach with a simpler, more consistent interface.

28

To create an application that accesses Live Services data through the Live Framework, a developer is free

to write code using a raw HTTP interface. To make this easier, however, the Live Framework also includes

Live Framework Toolkits. These libraries provide a simpler, more natural approach for developers to build

applications that access Live Services via the Live Framework. Microsoft provides toolkits for the .NET

Framework, Silverlight, and JavaScript, and others are likely to emerge from the programming community.

Once again, nothing about the way data is exposed by the Live Framework ties it to Microsoft

technologiesτLive Framework Toolkits can be created for any language or platform.

Using a Mesh

As long as it has the right permissions, any application is free to access Live Services data through the Live

Framework. Optionally, though, an ŀǇǇƭƛŎŀǘƛƻƴ ƳƛƎƘǘ ōŜ ǊǳƴƴƛƴƎ ƻƴ ŀ ǎȅǎǘŜƳ ǘƘŀǘΩǎ ōeen made part of a

mesh. If it is, the application has a few more options.

As described earlier, each user can have her own mesh containing the systems that she uses. For instance,

maybe she has a Windows XP desktop at work, a Macintosh at home, a laptop running Windows Vista,

and a phone that runs Windows Mobile. All of these systems can be grouped into a mesh, as Figure 16

shows.

Figure 16: Adding a system to a mesh installs the Live Operating Environment on that system.

To create a mesh, a user can sign in using her Live ID, then access her own Live Desktop through her

browser. She uses this cloud-based application to add systems to her mesh. As Figure 16 illustrates, the

user specifies a system to add, which in this example is her laptop (step 1), and the Live Desktop adds it to

her mesh. To do this, the Live Desktop in the cloud downloads and installs a copy of the Live Operating

Environment onto this machine (step 2).

29

As described earlier, the Live Operating Environment lets applications access Live Services data via HTTP.

²ƘŜƴ ƛǘΩǎ ǳǎŜŘ ƛƴ ŀ ƳŜǎƘΣ ƘƻǿŜǾŜǊΣ this component also does more: It synchronizes a ǳǎŜǊΩǎ Live Services

data across the cloud and all systems in the mesh. Figure 17 illustrates this idea.

Figure 17: The Live Operating Environment keeps Live Services data synchronized across desktops,

devices, and the cloud.

Users and applications can indicate what data should be included in the mesh, and the Live Operating

Environment takes care of keeping that information synchronized. CƻǊ ŜȄŀƳǇƭŜΣ aƛŎǊƻǎƻŦǘΩǎ [ƛǾŜ aŜǎƘ

application lets a user designate specific folders that should be part of the mesh. Once this is done, the

Live Operating Environment will silently propagate changes made to data in any of these folders across all

systems in the mesh. Similarly, per-user Live Services data, such as contacts and profile information, can

be kept in sync across the entire mesh.

Mesh synchronization is multi-master, which means that a user can change any copy of the information

on any deviceτtƘŜǊŜΩǎ ƴƻǘ Ƨǳǎǘ ƻƴŜ ƳŀǎǘŜǊ ǘƘŀǘ Ƴǳǎǘ ōŜ ǳǇŘŀǘŜŘΦ The technology used to do this is

FeedSync, a Microsoft-defined, publicly available protocol that relies on HTTP. Whenever possible, data is

synchronized between directly connected systemsτƛǘΩǎ ǇŜŜǊ-to-peer. ¢Ƙƛǎ ƛǎƴΩǘ ŀƭǿŀȅǎ ŀƴ ƻǇǘƛƻƴΣ

however, so a system can also sync with the Live Operating Environment in the cloud. This cloud-based

instance can connect directly to any system in the meshτƛǘΩǎ ŜǾŜǊȅōƻŘȅΩǎ ǇŜŜǊτŀƴŘ ǎƻ ƛǘΩǎ ŀōƭŜ ǘƻ

synchronize with any of them.

As always, an application running on a mesh-enabled system can access data by making HTTP requests to

the Live Operating Environment in the cloud. It also has access to a local copy of all Live Services data that

has been made part of this mesh, however. Rather than interacting with the remote instance of the Live

Operating Environment, the application can also issue the same HTTP requests to the instance running

locally, as Figure 17 shows. Except for the base URI, those requests are identical for both the local and

cloud Live Operating Environment.

30

This symmetry lets an application work in the same way with local data and with data stored in the cloud.

LŦ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ƛǎ ǊǳƴƴƛƴƎ ƻƴ ŀ ŘŜǎƪǘƻǇ ƻǊ ŘŜǾƛŎŜ ǘƘŀǘΩǎ ŎǳǊǊŜƴǘƭȅ ŘƛǎŎƻƴƴŜŎǘŜŘΣ ŦƻǊ ŜȄŀƳǇƭŜΣ it can access

the local copy, which acts as a cache for the last known state of the cloud data. When the device is

connected again, the application can either access the cloud data directlyτŀƭƭ ǘƘŀǘΩǎ ǊŜǉǳƛǊŜŘ ƛǎ ŎƘŀƴƎƛƴƎ

a URIτor wait for the local copy of the data to be updated by Live Operating Environment

synchronization.

SȅǎǘŜƳǎ ǘƘŀǘ ŘƻƴΩǘ Ǌǳƴ ǘƘŜ [ƛǾŜ hǇŜǊŀǘƛƴƎ 9ƴǾƛǊƻƴƳŜƴǘ Ŏŀƴ also participate in a mesh, albeit in a more

limited way. Because the Live Desktop can be accessed using any browser, a user running on, say, a Linux

system can use it to create a mesh with only a cloud componentτthe mesh contains no desktops or

devices. Applications running on the Linux system can store and access data in this simple mesh just as

they do any other Live Services data: using HTTP. In fact, an application can even implement the FeedSync

protocol to synchronize this cloud data with a local copy. While systems that run the Live Operating

EnvironmŜƴǘ ƘŀǾŜ ƳƻǊŜ ŎŀǇŀōƛƭƛǘƛŜǎΣ ǘƘƻǎŜ ǘƘŀǘ ŘƻƴΩǘ ƳƛƎƘǘ ŀƭǎƻ ŦƛƴŘ ǘƘƛǎ ŀǎǇŜŎǘ ƻŦ the Live Framework

useful.

Mesh-Enabled Web Applications

Any application, Windows-based or otherwise, can access Live Services dataτƛǘ ƴŜŜŘƴΩǘ ōŜ ǇŀǊǘ ƻŦ ŀ

mesh. If a developer is building an application that will always run on mesh systems, however, ǘƘŜǊŜΩs

another option. He can create a mesh-enabled Web application that can be distributed and managed by

the Live Framework itself. Figure 18 shows the basics of how this works.

Figure 18: A user can discover a mesh-enabled Web application, then install it on his mesh.

As the figure shows, a mesh-enabled Web application can be made available through a Microsoft-

provided application catalog in the cloud. A user can access this catalog to discover available mesh-

enabled Web applications (step 1). Once heΩǎ ŎƘƻǎŜƴ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΣ the user can install it (step 2).

InitiallyΣ ǘƘƛǎ ƻƴƭȅ ŎƻǇƛŜǎ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƛƴǘƻ ǘƘŜ ǳǎŜǊΩǎ ŎƭƻǳŘ ǎǘƻǊŀƎŜ ƛƴ [ƛǾŜ {ŜǊǾƛŎŜǎΦ ¢ƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ǿƛƭƭ

31

ōŜ ǎȅƴŎƘǊƻƴƛȊŜŘ ǿƛǘƘ ǘƘŜ ǳǎŜǊΩǎ ŘŜǎƪǘƻǇǎ ŀƴŘ ŘŜǾƛŎŜǎΣ ǘƘƻǳƎƘΣ ƭƛƪŜ ƻǘƘŜǊ ƳŜǎƘ Řŀǘŀ όǎǘŜǇ оύΦ The

application can now ōŜ Ǌǳƴ ŦǊƻƳ ǘƘŜ ƭƻŎŀƭ ǎǘƻǊŜ ƻƴ ŀƴȅ ǎȅǎǘŜƳ ƛƴ ǘƘƛǎ ǳǎŜǊΩǎ ƳŜǎƘ όǎǘŜǇ п). Lƴ ŦŀŎǘΣ ƛǘΩǎ ƴƻǘ

accurate to think of a mesh-enabled Web application as being installed on just one system. Instead, the

application is installed on all of themτƛǘΩǎ ƛƴǎǘŀƭƭŜŘ ƻƴ ǘƘŜ ƳŜǎƘΦ

A mesh-enabled Web application must be implemented using a multi-platform technology, such as

Microsoft Silverlight, DHTML, or Adobe Flash. These technologies are supported on all of the operating

systems that can run the Live Framework: Windows Vista/XP, Macintosh OS X, and Windows Mobile 6.

Accordingly, any mesh-enabled Web application can run on any system in the mesh (although all of these

ƻǇǘƛƻƴǎ ŀǊŜƴΩǘ ǎǳǇǇƻǊǘŜŘ ƛƴ ǘƘŜ [ƛǾŜ CǊŀƳŜǿƻǊƪ bƻǾŜƳōŜǊ /¢tύΦ

Because the Live Operating Environment keeps all mesh data in sync, a mesh-enabled Web application

will see ǘƘŜ ǎŀƳŜ Řŀǘŀ ƴƻ ƳŀǘǘŜǊ ǿƘŜǊŜ ƛǘΩǎ ǊǳƴƴƛƴƎΦ ¢Ƙƛǎ ƎƛǾŜǎ ŀƴ ƛƴǘŜǊŜǎǘƛƴƎ new meaning to the notion

of write once, run anywhere: A mesh-enabled Web application can run unchanged on any system within a

mesh, and it can ŀƭǎƻ Ŏƻǳƴǘ ƻƴ ƘŀǾƛƴƎ ǘƘŜ ǎŀƳŜ Řŀǘŀ ŀǾŀƛƭŀōƭŜ ƴƻ ƳŀǘǘŜǊ ǿƘŜǊŜ ƛǘΩǎ ǊǳƴƴƛƴƎΦ

As with other kinds of Live Framework data access, a mesh-enabled Web application has access only to

data that a user has specifically authorized it to work with. And like other Silverlight, DHTML, and Flash

applications, a mesh-enabled Web application runs in a secure sandbox. Unless specifically allowed by a

user, these applications canΩǘ directly access the local disk or the data of other mesh-enabled Web

applications. A user is free to share a mesh-enabled Web ŀǇǇƭƛŎŀǘƛƻƴ ǿƛǘƘ ŀƴƻǘƘŜǊ ǳǎŜǊΩǎ ƳŜǎƘΣ however.

For example, a user could tell a mesh-enabled Web application to invite everyone in her address book to

use it. Since her contacts information is directly available to the applicationτƛǘΩǎ ǇŀǊǘ ƻŦ ƘŜǊ ƳŜǎƘτhaving

the application do this is straightforward.

To help developers create mesh-enabled Web applications, Microsoft provides project templates for

Visual Studio 2008. To make updating these applications easier, a developer can upload a new version to

the application catalog, then let the Live Framework automatically take care of updating that application

ƛƴ ǘƘŜ ƳŜǎƘ ƻŦ ŜǾŜǊȅ ǳǎŜǊ ǿƘƻΩǎ ƛƴǎǘŀƭƭŜŘ ƛǘΦ !ƴŘ ǘƻ ƘŜƭǇ ŘŜǾŜƭƻǇŜǊǎ ƳŀƪŜ ƳƻƴŜȅ ŦǊƻƳ ǘƘŜƛǊ ŀǇǇƭƛŎŀǘƛƻƴǎΣ

Microsoft plans to allow plugging in its own adCenter or a third-party service to let a mesh-enabled Web

application show ads.

To a great degree, the Live Framework is a wholly new kind of application platform. Many aspects of the

environment, such as access to Live Services data and the focus on desktops and devices, make clear that

a core goal for this technology is to support consumer-oriented, socially aware applications. In a very real

sense, the Live Framework sits at the intersection of new technology and new kinds of human interaction.

CONCLUSIONS

The truth is evident: Cloud computing is here. For developers, taking advantage of the cloud means using

cloud platforms in some way. With the Azure Services Platform, Microsoft presents a range of platform

styles addressing a variety of needs:

 Windows Azure provides a Windows-based computing and storage environment in the cloud.

 .NET Services offers cloud-based infrastructure for cloud and on-premises applications.

32

 SQL Services provides a cloud database through SQL Data Services and data synchronization via the

άIǳǊƻƴέ 5ŀǘŀ IǳōΣ with more cloud-based data services planned.

 Live Services provides the Live Framework, which lets application access Live Services data,

synchronize data across systems joined into a mesh, and more.

These four approaches address a variety of requirements, and most developers probably ǿƻƴΩǘ ǳǎŜ ŀƭƭ ƻŦ

them. Yet whether you work for an ISV or an enterprise, some cloud platform services are likely to be

useful for applications your organization creates. A new world is unfolding; prepare to be part of it.

ABOUT THE AUTHOR

David Chappell is Principal of Chappell & Associates (www.davidchappell.com) in San Francisco, California.

Through his speaking, writing, and consulting, he helps people around the world understand, use, and

make better decisions about new technologies.

