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UNDERSTANDING CLAIMS-BASED IDENTITY 

For people who create software today, working with identity isn’t much fun. First, a developer needs to 

decide which identity technology is right for a particular application. If the application will be accessed in 

different ways, such as within an organization, across different organizations, and via the public Internet, 

one identity technology might not be enough—the application might need to support multiple options. 

Next, the developer needs to figure out how to find and keep track of identity information for each of the 

application’s users. The application will get some of what it needs directly from those users, but it might 

also need to look up other information in a directory service or someplace else.  

This is all more complex than it needs to be. Why not create a single interoperable approach to identity 

that works in pretty much every situation? And rather than making applications hunt for identity 

information, why not make sure that this single approach lets users supply each application with the 

identity information it requires?  

Claims-based identity achieves both of these goals. It provides a common way for applications to acquire 

the identity information they need from users inside their organization, in other organizations, and on the 

Internet. Along with making the lives of developers significantly simpler, a claims-based approach can also 

lower the cost of building and managing applications. 

Making claims-based identity real requires developers to understand how and why to create claims-based 

applications. It also requires some infrastructure software that applications can rely on. This overview 

describes the basics of claims-based identity, then looks at how a group of Microsoft technologies 

(originally codenamed “Geneva”) help make this world a reality. Those technologies are Active Directory 

Federation Services (AD FS) 2.0, Windows CardSpace 2.0, and Windows Identity Foundation (WIF). 

THE PROBLEM: WORKING WITH IDENTITY IN APPLICATIONS 

Sometimes, working with identity is simple. Think of a Windows application that doesn’t need to know 

much about its users, for example, and that will be accessed only by users within a single organization. 

This application can just rely on Kerberos, part of Active Directory Domain Services (AD DS, originally 

known as just “Active Directory”), to authenticate its users and convey basic information about them. Or 

suppose you’re creating an application that will be accessed solely by Internet users. Again, the common 

approach to handling identity is straightforward: require each user to supply a username and password, 

then maintain a database of this user information.  

Yet these simple scenarios quickly break down. What if you need more information about each user than 

is provided by either Kerberos or a simple username and password? Your application will now need to 

acquire this information from some other source, such as AD DS, or keep track of the information itself. 

Or suppose the application must be accessed both by employees inside the organization and by 

customers via the Internet—what now? Should the application support both Kerberos and 

username/password-based logins? And what about the case where you’d like to let users from a business 

partner access this application without requiring a separate login? This kind of identity federation can’t be 

accomplished very well with either Kerberos or username/password logins—more is required. Or suppose 

the application lives in the cloud. How should identity be handled in this situation? 
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The right solution is to have one approach to identity that works in all of these scenarios. To be effective, 

this single approach must be based on widely recognized industry standards that interoperate across both 

platform and organizational boundaries. But standards alone aren’t enough. The solution also needs to be 

widely implemented in products from multiple vendors and be simple for developers to use. This unified, 

broadly supported approach is exactly what claims-based identity is meant to provide. 

THE SOLUTION: CLAIMS-BASED IDENTITY 

Claims-based identity is a straightforward idea, founded on a small number of concepts: claims, tokens, 

identity providers, and a few more. This section describes the basics of this technology, starting with a 

look at these fundamental notions.  

Before launching into this description, however, there’s an important point to make. While this paper 

focuses on the mechanics, using the technology described here can require more, such as business 

agreements between different organizations. Addressing the technical challenges is essential, but they’re 

not always the whole story.  

Creating Claims  

What is an identity? In the real world, the question is hard to answer—the discussion quickly veers into 

the metaphysical. In the digital world, however, the answer is simple: A digital identity is a set of 

information about somebody or something. While all kinds of entities can have digital identities, including 

computers and applications, we’re most often concerned with identifying people. Accordingly, this 

overview will always refer to things with identities as “users”.  

When a digital identity is transferred across a network, it’s just a bunch of bytes. It’s common to refer to a 

set of bytes containing identity information as a security token or just a token. In a claims-based world, a 

token contains one or more claims, each of which carries some piece of information about the user it 

identifies. Figure 1 shows how this looks. 

 

Figure 1: A token contains claims about a user along with a digital signature that can be used to verify 

its issuer. 

Claims can represent pretty much anything about a user. In this example, for instance, the first three 

claims in the token contain the user’s name, an identifier for a group she belongs to, and her age. Other 

tokens can contain other claims, depending on what’s required. To verify its source and to guard against 
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unauthorized changes, a token’s issuer digitally signs each token when it’s created. As Figure 1 shows, the 

resulting digital signature is carried with the token. 

But who issues tokens? In a claims-based world, tokens are created by software known as a security token 

service (STS). Figure 2 illustrates the process. 

 

Figure 2: A user acquires a token containing some set of claims from an STS. 

In a typical scenario, an application working on behalf of a user, such as a Web browser or another client, 

asks an STS for a token containing claims for this user (step 1). This request is made using the standard 

protocol WS-Trust. (In fact, support for WS-Trust is one of the defining characteristics of an STS.) The 

request is authenticated in some way, such as by providing a Kerberos ticket, a password from the user, 

or something else. The request typically contains both the name of the user for whom this token should 

be issued and a URI identifying the application the user wishes to access. The STS then looks up 

information about the user and the application in a local database (step 2). As the figure shows, this 

database maintains account information and other attributes about users and applications. Once the STS 

has found what it needs, it generates the token and returns it to the requester (step 3). 

As Figure 2 shows, an STS is owned by some identity provider (sometimes called an issuer). The identity 

provider is what stands behind the truth of the claims in the tokens an STS creates. In fact, this is why the 

contents of a token are called “claims”: They’re assertions that this identity provider claims are true. The 

application that receives this token can decide whether it trusts this identity provider and the claims it 

makes about this user. 

Identity providers come in many forms. If you use a token issued by an STS on your company’s network, 

for example, the identity provider is your company. If you use a token issued by the STS provided by 



    

6 

Microsoft’s Windows Live ID service on the Internet, this Microsoft service is acting as the identity 

provider. But whoever the identity provider is, being able to acquire and use a token full of claims is 

useful.  

To see why, think about the pre-claims world we (mostly) live in today. In this environment, an application 

typically gets only simple identity information from a user, such as her login name. All of the other 

information it needs about that user must be acquired from somewhere else. The application might need 

to access a local directory service, for instance, or maintain its own application-specific database. With 

claims-based identity, however, an application can specify exactly what claims it needs and which identity 

providers it trusts, then expect each user to present those claims in a token issued by one of those 

providers. A claims-aware application is still free to create its own user database, of course, but the need 

to do this shrinks. Instead, each request can potentially contain everything the application needs to know 

about this user. 

Claims can convey a variety of information. As Figure 1 showed, a claim might contain traditional things 

such as a user’s name and group memberships, generally useful information such as her address, or other 

descriptive data such as her age. A claim might also identify the roles a user can act in, providing more 

information that the application can use to make an access control decision. Yet another possibility is to 

use a claim to indicate explicitly the user’s right to do something, such as access a file, or to restrict some 

right, such as setting an employee’s purchasing limit. Because an application can count on getting the 

identity information it needs in a token, claims-based identity makes life simpler for application 

developers.  

This approach also brings one more benefit: It gets developers out of the business of authenticating users. 

All the application needs to do is determine that the token a user presents was created by an STS this 

application trusts. How the user proved its identity to this STS—with a password, a digital signature, or 

something else—isn’t the application’s problem. This lets the application be deployed unchanged in 

different contexts, a significant improvement over the usual situation today.  

Using Claims 

Claims, tokens, identity providers, and STSs are the foundation of claims-based identity. They’re all just 

means to an end, however. The real goal is to help a user present her digital identity to an application, 

then let the application use this information to decide what she’s allowed to do. Figure 3 shows a simple 

picture of how this happens. 
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Figure 3: A browser or other client can acquire a token from an STS, then present this token and the 

claims it contains to an application. 

As the figure shows, a Web browser or other client acting on behalf of a user gets a token for a particular 

application from an STS owned by some identity provider (step 1). Once it has this token, the browser or 

client sends it to the application (step 2), which attempts to verify its signature. If this verification works, 

the application knows which STS, and thus which identity provider, issued the token. If the application 

trusts this identity provider, it accepts the claims in the token as correct and uses them to decide what the 

user is allowed to do (step 3).  

If the token contains the user’s name, for example, the application can assume that the user really is who 

she claims to be. Since the user was required to authenticate herself to get this token, the application 

doesn’t need to authenticate her again. (In fact, because it relies on the claims in the token, an application 

is sometimes referred to as a relying party.) 

Although it’s not shown in the figure, there’s an essential first step before any of this can happen: An 

administrator must configure the STS to issue the right claims for this user and this application. Without 

this, the STS likely can’t create a token containing the claims that the application needs. While doing this 

might seem like a burden, the reality is that this information must also be configured in the non-claims-

based world. The big difference is that now the claims are all in one place, accessible through the STS, 

rather than spread across different systems.  

The implicit assumption in Figure 3 is that the user has just one digital identity that she uses for all 

applications. The truth, though, is that she probably wishes to send different identity information to 

different applications. Think about how this works in the real world: You show your passport to a border 

guard, but give your driver’s license to a traffic cop. Neither will accept the identity demanded by the 



    

8 

other, because different situations require presenting different information from different sources. 

Passports are issued by national governments, while driver’s licenses might be issued by some more local 

entity, such as a state government. The analog in the digital world is relying on different identity 

providers, each offering an STS that issues tokens containing appropriate claims. The claims in these 

tokens vary, just as the information in your passport is different from what’s in your driver’s license. 

If we’re all going to have multiple digital identities—and we are—it would be useful to have a consistent 

way to select the identity we want to use to access a particular application at a particular time. In other 

words, we’d like to have an identity selector. Figure 4 shows where this component fits. 

 

Figure 4: An identity selector provides a consistent way for users to choose which identity they wish to 

present to an application. 

In this more complete scenario, the process begins when the user accesses the application. Whether it’s 

contacted from a browser or some other client, the application can indicate what kind of token it 

requires, what kind of claims that token should contain, and what identity providers it trusts (step 1). As 

always in a claims-based world, the application can do this in a vendor-neutral way, using either WS-

SecurityPolicy (for requests made via SOAP) or HTML (for requests made via HTTP) to describe these 

requirements. Once the user’s system has this information, its identity selector can present the user with 

a visual representation of her available identities that meet these requirements. The user selects one of 

these (step 2), and the identity selector contacts the appropriate identity provider to authenticate the 

user and get a token for this identity (step 3). Once it has the token, the browser or client sends it to the 

application (step 4), which verifies it, then uses the claims it contains (step 5). 

It’s important to understand that while an identity selector is useful, it’s not required. Claims-based 

identity depends on an STS that can issue tokens and an application able to accept them, but how the 
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user chooses an identity can vary. In fact, a single deployment can work with a mix of clients, some with 

and some without an identity selector. Moving to a claims-based world doesn’t necessarily require 

deploying identity selectors on every user’s desktop. 

Also, while claims-based identity does specify important aspects of these interactions, such as how tokens 

are requested from an STS, this approach explicitly omits defining other things. For example, the claims-

based approach doesn’t mandate any particular format for tokens. It’s common today to use tokens 

defined using the XML-based Security Assertion Markup Language (SAML), but this isn’t required. Any 

token format that an application and an STS agree on can be used.  

Microsoft’s Platform for Claims-Based Identity  

Making claims-based identity real requires several things. STSs must be available, or there will be no place 

to get tokens. An identity selector would also be nice to have, since without one, users won’t have a 

consistent way to choose among different identities. And finally, developers will need to build claims-

aware applications that know how to receive tokens and use the claims they contain. Rather than making 

every developer write this code from scratch, it would make sense to provide a standard library that any 

application could use.  

These three things are exactly what Active Directory Federation Services 2.0, CardSpace 2.0, and Windows 

Identity Foundation provide. Figure 5 shows where each of these technologies fits. 

 

Figure 5: AD FS 2.0 implements a Windows-based STS, CardSpace 2.0 provides an identity selector for 

Windows clients, and Windows Identity Foundation is a standard library for creating claims-aware 

Windows applications. 



    

10 

This figure is a replica of Figure 4; the only difference is that AD FS 2.0 is shown as one of the STSs, 

CardSpace 2.0 is shown as the identity selector, and the application is built using WIF (commonly 

pronounced “Dub-I-F”). All three technologies are described in more detail later in this overview, but it’s 

worth looking at the basics of each one here. 

As its name suggests, AD FS 2.0 is the follow-on to the original Active Directory Federation Services 

technology. Don’t be misled by the word “federation” in the name of this technology, however. While AD 

FS 2.0 does support identity federation, as described later, it also provides broad support for claims-based 

identity. For example, unlike its predecessor, AD FS 2.0 implements an STS that generates SAML tokens in 

response to WS-Trust requests. Also unlike the first AD FS release, which supported only Web browsers, 

AD FS 2.0 supports both browsers and other clients, such as those built using Windows Communication 

Foundation (WCF). (In the jargon of identity, AD FS 2.0 supports both active and passive clients, while the 

first release of AD FS supported only passive clients.) Another important difference from the original AD 

FS is that AD FS 2.0 supports both WS-Federation and the SAML 2.0 protocol, letting it work in a broader 

range of environments. 

The AD FS 2.0 STS can be used entirely inside an organization, exposed on the Internet, or both. Yet it’s 

important to understand that using claims-based identity doesn’t require using AD FS 2.0. As Figure 5 

suggests, any STS from any vendor, or even a custom-built STS, can be used. Still, one of Microsoft’s 

primary goals in providing AD FS 2.0 is to make widely available a fully-featured STS built on Active 

Directory. Until STSs are common, the benefits of claims-based identity are unlikely to materialize. 

CardSpace 2.0 is also the successor to an existing Microsoft technology, the original CardSpace. This 

identity selector can be used both with Web browsers, including Internet Explorer and Firefox, and with 

other Windows clients, such as WCF applications. And while an STS is fundamental to a claims-based 

world, using an identity selector isn’t required—claims-based identity can still work without one. The 

main thing that CardSpace 2.0 provides is a consistent way for people to select which identity they wish to 

use. (In fact, AD FS 2.0 by default takes advantage of CardSpace 2.0 if a client has it, but falls back to a 

simpler approach for clients that don’t have an installed identity selector.)  

An important aspect of an identity selector is its user interface. Letting users choose their identity in the 

same way for every application and every kind of client can greatly simplify their lives. Toward this end, 

CardSpace 2.0 provides the standard screen shown in Figure 6. 
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Figure 6: CardSpace 2.0 provides a common user interface for selecting identities, representing each 

identity with a card.  

Each identity is represented by a card (hence the name “CardSpace”). Each card is associated with a 

particular identity at some identity provider. Clicking on a card causes CardSpace 2.0 to request a token 

for this identity from the associated identity provider, perhaps prompting the user for a password or 

something else to authenticate the request. While the software exchanges tokens containing claims, a 

user sees only this simpler metaphor of cards.  

The third component required to make claims-based identity a reality, at least for Windows applications, 

is Windows Identity Foundation. This library is a set of .NET Framework classes that implement essential 

identity functions, such as receiving a token, verifying its signature, accessing the claims it contains, and 

more. For situations where the AD FS 2.0 STS isn’t sufficient, WIF also provides support for building your 

own STS. (One important example of using WIF in this way already exists: AD FS 2.0 itself is built on WIF.) 

It’s important to realize that because all interaction is done in a standard way, none of these technologies 

specifically requires any of the others. AD FS 2.0 doesn’t require CardSpace 2.0, CardSpace 2.0 doesn’t 

require AD FS 2.0, and neither one requires applications to use WIF. To CardSpace 2.0, for example, AD FS 

2.0 looks like any other STS, with token requests sent using the standard WS-Trust protocol. Any 

application that supports the standard protocols for claims-based identity can interact with CardSpace 2.0 

and AD FS 2.0—using WIF isn’t required. Even though all of these technologies are from Microsoft, there 

are no proprietary links between them. All of the communication is based on industry standards. The goal 

is to make it easier to use claims-based identity both within the Windows world and across platforms 

from different vendors.  

USING CLAIMS-BASED IDENTITY  

Getting your mind around claims-based identity requires understanding the basics of this technology. Still, 

the best way to get a feel for this approach is to walk through examples of how it can be applied. 

Accordingly, this section looks at four different ways this technology can be used.  
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Without claims-based identity, application developers are faced with a diverse set of scenarios, each with 

its own identity solution. One big contribution of claims-based identity is to collapse all of these down to 

just one problem: How does an application get information about a user from a trusted source? As this 

section shows, claims-based identity provides a consistent answer across a range of scenarios. 

At the risk of being redundant, it’s important to emphasize that even though these examples show 

Microsoft technologies, this isn’t required. Products from other vendors, such as IBM Tivoli Federated 

Identity Manager and Novell Access Manager, also provide STSs today. Similarly, other identity selectors 

are available, including the open source Higgins Selector, as well as other libraries to create claims-aware 

applications. The key point is that while Microsoft is an important player, the move toward claims-based 

identity is an industry-wide, multi-vendor endeavor.  

USING CLAIMS INSIDE AN ENTERPRISE 

Every enterprise acts as an identity provider, and virtually every enterprise application must deal with 

identity. AD FS 2.0, CardSpace 2.0, and WIF can provide the foundation for using claims-based identity 

with applications running inside an organization. Figure 7 shows how this looks. 

 

Figure 7: An enterprise can use AD FS 2.0, CardSpace 2.0, and WIF to support claims-based identity for 

its internal applications. 

In this example, a user logs in using AD DS, getting an initial Kerberos ticket as always (step 1). The user 

then accesses a claims-aware application built using WIF, learning what kinds of tokens it accepts and 

what claims those tokens must contain (step 2). If CardSpace 2.0 is used (it’s not required, remember), the 

user might then see the screen shown earlier in Figure 6 and select an identity by choosing a card (step 3). 

CardSpace 2.0 will then request a token for this identity, supplying a Kerberos ticket to authenticate the 
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user (step 4). The AD FS 2.0 STS verifies the ticket, then looks in AD DS for the information it needs to 

create the requested token (step 5). Exactly what claims appear in this token depend on both the user 

requesting it and the application that user is accessing—each application indicates exactly what claims it 

needs. Once the token has been created, the AD FS 2.0 STS sends it back to the user’s system (step 6), 

which sends it on to the application (step 7). The application uses WIF to verify the token’s signature and 

make its claims available for use (step 8). 

One big plus of a claims-based approach is worth re-emphasizing here: Rather than having to go look for 

the information it needs about a user, the application can instead get everything handed to it in the 

token. If the application needs, say, the user’s job title, it can specify this in its list of required claims. 

When the STS creates a token for the application, it finds the user’s job title in AD DS and inserts it as a 

claim that the application can use. Without this, the application developer must write his own code to dig 

this information out of AD DS. Claims-based identity makes the developer’s life significantly easier. 

Along with easing the lives of developers, an STS also performs another function: It acts as a claims 

transformer. When the client requests a token from AD FS 2.0 in Figure 7, for instance, it provides a 

Kerberos ticket. This ticket can be thought of as a token containing a simple set of claims (the user’s name 

and group memberships). The AD FS 2.0 STS uses this token to authenticate the user making the request, 

then emits another token. This new token is in a different format—it’s a SAML token rather than a 

Kerberos ticket—and it probably contains a different set of claims, since it can include whatever the target 

application has specified. In a very real sense, the STS has transformed one set of claims into another. 

USING CLAIMS ON THE INTERNET 

Now suppose this organization wishes to make the same application accessible to remote employees via 

the Internet. Rather than modifying the application to accept username/password logins, a traditional 

solution, the same claims-based approach can be used—the application remains unchanged. Figure 8 

illustrates this scenario. 
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Figure 8: An enterprise can use the AD FS 2.0 STS to create tokens for users on the Internet. 

Here, the user is on another computer outside the enterprise. As before, this user accesses the 

application and learns what kinds of tokens it will accept (step 1). Using CardSpace 2.0 (which is useful but 

not required), the user selects an identity that meets these requirements (step 2). The user’s system then 

requests a token for this identity from the enterprise’s STS, implemented using AD FS 2.0, which 

authenticates the user and sends back the token (step 3). It can then submit this token to the application 

(step 4), which relies on WIF to verify the token and uses the claims it contains (step 5). Rather than 

requiring a different way of handling identity for Internet access, as is common today, a claims-based 

approach allows handling this situation just like the inside-the-enterprise case. 

Still, some extra complexity creeps in. When the user requests a token in step 3, for example, how does 

she authenticate herself to the STS? Kerberos tickets work just fine for users inside the enterprise, as 

shown earlier in Figure 7, but they don’t work well for Internet users. Instead, the user might provide a 

username and password in step 3 to authenticate her request, an option that Microsoft supports in AD FS 

2.0. Since the users in this scenario are employees, they already have accounts in AD DS, and so they can 

log in with no trouble. 

But what if the users aren’t employees? Suppose the application needs to be exposed via the Internet to 

customers as well. Can this approach still work? The answer, unsurprisingly, is yes. Although it’s not an 

especially common option, information about external users can be mingled with employee accounts in 

AD DS, letting it be accessed by AD FS 2.0.  

But wait a minute: If Internet users still need usernames and passwords, how is the claims-based 

approach making things better? There are a couple of answers. First, recognize that users no longer have 
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a password for each application. Instead, they’ll (at most) have one for each STS they use. This frees 

applications from the need to store sensitive password information, moving that responsibility instead to 

the much smaller number of STSs. Also, since requests for tokens are made directly from CardSpace 2.0—

the user never enters a URL for the STS—phishing for these passwords becomes more difficult. There’s no 

way for an attacker to slip in a spurious URL for its own STS. While claims-based identity doesn’t eliminate 

usernames and passwords, it nonetheless improves the situation. 

In the case shown in Figure 8, the organization that provides the application is also acting as the identity 

provider. While this makes sense in many situations, there are other scenarios in which the identity 

provider is an external organization. For example, Microsoft today offers Windows Live ID as an Internet-

accessible STS, and other identity providers also exist. Rather than implementing its own identity provider 

(or perhaps along with it), an organization can create an application that accepts tokens from external 

providers like these. Figure 9 shows how this looks.  

 

Figure 9: An application can accept tokens issued by identity providers run by external organizations. 

As in the example shown in Figure 8, the process begins with the user accessing the application (step 1), 

then choosing an identity (step 2). This time, however, the token for this identity is provided by an STS run 

by an outside identity provider (step 3). Once it has the token, the user’s system submits it to the 

application as usual (step 4), which uses the claims it contains (step 5). 

Don’t be confused: Even though one of the external identity providers in this example is run by Microsoft, 

claims-based identity is not bound to a particular provider. Anybody who implements an STS can act as an 

identity provider, assuming they can convince applications to trust the claims in tokens they issue.  
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Whether an Internet-accessible application trusts an outside identity provider or only one run by its own 

organization, a claims-based approach is attractive. It allows handling identity in a consistent way for 

users inside and outside the firewall. It also gets applications out of the business of maintaining 

username/password databases for Internet users, making phishing less effective.  

Along with making developers’ lives easier, claims-based identity can also make things simpler for users. 

For example, since a token can carry whatever claims an application specifies, users can more easily 

submit the common information requested by Web sites—they need no longer type it in at each site. 

While the behavior of thousands of application developers and millions of users won’t change overnight, 

the long-term prognosis is positive. 

USING CLAIMS BETWEEN ENTERPRISES 

Another common identity challenge is letting users in one organization access an application running in 

some other organization. For example, suppose your company wishes to make an internal SharePoint site 

accessible to employees at a partner firm. One way to do this is to give each of these external users their 

own account in your company. While this approach works, it’s unappealing. Those users won’t like having 

a separate login, and your firm’s administrators won’t like having to administer accounts for people 

outside your company. Doing this also creates security risks—how can your administrators know when an 

external user has left his company and so should no longer have an account? 

A better solution is to let the external users access your application using their own identities. This 

approach requires no separate logins and no new accounts. What it does require, however, is creating a 

federation relationship between your firm and its partner. Doing this will likely require some kind of legal 

agreement between the two organizations, a topic that’s beyond the scope of this discussion. It also, of 

course, requires putting in place the right technology. 

The first release of AD FS allowed identity federation for passive clients (that is, for browsers), but not for 

active clients. AD FS 2.0 still supports the passive option, which relies on a standard called WS-Federation. 

With CardSpace 2.0 and STSs, however, claims-based identity can also be used for federated access by 

active clients. This lets the same identity technology be used in yet another important scenario, and it also 

offers users more control than did the original AD FS over which identity they use.  

One approach to providing federated identity in a claims-based world is to configure an application 

running in one organization to trust an STS in another. Figure 10 shows how this looks. 
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Figure 10: If the application trusts the STS in the client's enterprise, it can accept and use a token issued 

by that STS. 

In this scenario, a user in enterprise X accesses an application in enterprise Y and learns its token 

requirements (step 1). Here, that application is configured to trust both its own STS, the one in enterprise 

Y, and the STS in enterprise X. All that’s required is for the user in enterprise X to choose an identity that 

matches this application’s requirements (step 2), then get a token for that identity from its own STS (step 

3). The browser or client submits this token to the application (step 4), which uses WIF to verify the token 

and extract its claims. The application can then use these claims any way it likes (step 5).  

This solution is simple, but it’s not without problems. Suppose this application has users in several 

different enterprises, for instance. With the approach shown in Figure 10, the application would need to 

be configured to trust the STS in each one, an unappealing prospect. A better solution is to let the 

mechanics of federated identity be handled by the STSs themselves. Doing this means that an application 

only needs to trust its own STS, making life significantly simpler for the people who build and administer 

it. Figure 11 shows this more likely situation. 
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Figure 11: If the application trusts only the STS in its own enterprise, the client must get a token from 

that STS to access the application. 

This scenario starts in the same way: The user in enterprise X accesses an application in enterprise Y and 

learns its token requirements (step 1). This time, however, that application is configured to trust only its 

own STS, the one in enterprise Y. Once it determines this, CardSpace 2.0 on the user’s system contacts the 

STS in enterprise Y to learn its token requirements (step 2). Along with its identity selector role, CardSpace 

2.0 also has built-in intelligence to traverse this kind of federation relationship. CardSpace 2.0 then 

prompts the user to select an identity (i.e., a card) that matches those requirements (step 3) and requests 

a token for this identity from the enterprise X STS (step 4). This token contains claims about the user, but 

it’s not a token that the application will accept—it was issued by an STS that the application doesn’t trust. 

Instead, CardSpace 2.0 submits this token to the STS in enterprise Y (step 5). This STS is configured to trust 

the STS in enterprise X, a relationship that must be established explicitly by administrators in the two 

organizations. (How this trust relationship gets created is described in a bit more detail later.) Because of 

this trust, the STS in enterprise Y can verify the token it receives from enterprise X, then issue a token that 

allows this user to access the application (step 6). The user presents this token to the application (step 7), 

and the application uses WIF to verify the token and extract its claims. The application can now use these 

claims as usual (step 8). 

It’s worth pointing out that even though AD FS 2.0 was shown as one of the STSs in both of these 

federation scenarios, it’s not required. CardSpace 2.0 can communicate with any STS from any vendor. 

And once again, using CardSpace isn’t required—it’s just a convenience for users who work with multiple 

identities. 
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Note too that the STS in enterprise Y is acting as a claims transformer, accepting a token issued by STS X, 

then creating its own token. The contents of the token STS Y creates might well be different from those in 

the token it receives from STS X—it’s free to add, remove, or modify the claims. In fact, AD FS 2.0 provides 

a fairly sophisticated way for an administrator to define rules for these transformations. It’s even possible 

to prohibit issuing tokens entirely when necessary. 

And finally, think again about how convenient it is for the application to get the information it needs 

about a user directly in the token. When both user and application are in the same organization, the 

application might be able to access, say, AD DS directly to get information such as the user’s job title. 

When they’re in different organizations, as in the federated case shown here, the application almost 

certainly won’t be allowed to do this. Getting everything it needs handed to it in the user’s token is very 

nice indeed. 

USING CLAIMS WITH CLOUD-BASED APPLICATIONS 

Cloud computing, running applications on Internet-accessible servers owned by third parties, brings more 

identity challenges. Fortunately, claims-based identity works well in this world, too.  

For example, suppose an enterprise wishes to create an application that runs on a cloud platform, such as 

Microsoft’s Windows Azure, then give its employees single sign-on to the application. Figure 12 shows 

how this could be done using claims-based identity. 
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Figure 12: An enterprise can use AD FS 2.0, CardSpace 2.0, and WIF to provide single sign-on for 

applications running on Windows Azure. 

This scenario isn’t really new; in fact, it’s very similar to the simple identity federation example shown 

previously in Figure 10. The Windows Azure application is built using WIF, and the steps to access it are 

just as described earlier. As the figure shows, the Windows Azure application trusts only the STS in 

enterprise X, the organization that created it. Users in that enterprise can access this cloud-based 

application just as if it were running within their enterprise—they don’t see any difference. Because the 

application trusts only this enterprise’s STS, however, access requests that carry tokens issued by other 

identity providers will be denied.  

Other claims-based scenarios described earlier can also be applied here. For example, a cloud application 

might be configured to trust an external identity provider such as Windows Live ID, allowing users access 

with tokens issued by that provider. Alternatively, a vendor creating a Software as a Service (SaaS) 

application might use claims-based identity to federate that application with multiple customers, giving 

users at each one single sign-on access. The claims-based approach was designed to be quite general, and 

so it adapts to cloud computing in a straightforward way.  

A CLOSER LOOK AT THE TECHNOLOGIES 

Understanding how claims-based identity can be applied is important. It’s also useful to understand the 

software technology that underlies this idea. For Windows, this means understanding AD FS 2.0, 

CardSpace 2.0, and WIF. This section takes a closer look at each of these. 
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ACTIVE DIRECTORY FEDERATION SERVICES 2.0 

While AD FS 2.0 adds quite a bit to its predecessor, including a full-fledged STS, it also supports all of the 

functions of its earlier incarnation. For example, as mentioned earlier, AD FS 2.0 allows using WS-

Federation to provide identity federation for passive clients (i.e., Web browsers). Unlike the first AD FS 

release, however, AD FS 2.0 also supports using the SAML 2.0 protocol for this purpose. (Microsoft has 

successfully completed interoperability testing of this protocol with the Liberty Alliance, a group of users 

and vendors that have long promoted the SAML 2.0 protocol.) Supporting this alternative protocol allows 

Windows systems with AD FS 2.0 to work with a broader range of identity federation products. 

Also like its predecessor, AD FS 2.0 allows an administrator to establish trust with other STSs. Figure 13 

illustrates the fundamentals of how this works. 

 

Figure 13: Establishing a trust relationship between STSs requires exchanging certificates and more. 

The situation shown here is identical to the one shown earlier in Figure 11: The application in enterprise Y 

only trusts tokens issued by its own STS. This means that a client in enterprise X must first get a token 

from its own STS, then use this to request a new token from the STS in enterprise Y, as described earlier. 

Accomplishing this requires addressing several issues. 

For example, how does the STS in enterprise Y, called the federation provider, know that the token this 

client sends was actually issued by the STS in enterprise X, referred to as the identity provider? The 

answer is that this token is signed by the identity provider using its private signing key. To allow the 

federation provider to verify this signature, the identity provider sends it a certificate containing the 
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corresponding public key for this signing key, as Figure 13 shows. As the figure also shows, the identity 

provider sends the federation provider a list of the claim types it can expect to receive.  

When the identity provider creates a token that’s destined for the federation provider, it can encrypt this 

token so attackers can’t read it. To allow this, the federation provider sends a certificate for its encryption 

key to the identity provider, as Figure 13 shows. The identity provider uses the public key in this 

certificate to encrypt all tokens it sends to this federation provider, ensuring that only the federation 

provider’s STS can read them. 

The first release of AD FS required similar exchanges to establish trust between federated domains. AD FS 

2.0 makes this process simpler by automating what were originally entirely manual processes. For 

example, when a certificate is about to expire, AD FS 2.0 can automatically create a new key pair and 

certificate, then make the certificate available to its partner STS. 

Another advance that AD FS 2.0 provides over the original AD FS release is broader support for storing 

identity information. Unlike its predecessor, AD FS 2.0 views its account store, containing things like 

usernames and passwords, separately from its attribute store, which holds other information about users. 

For the account store, AD FS 2.0 supports only AD DS. For the attribute store, however, more options are 

possible, including AD DS, Active Directory Lightweight Directory Services (AD LDS), and SQL Server. It’s 

also possible to write custom providers for other attribute stores. 

One more thing worth mentioning is the ability to perform AD FS 2.0 administrative functions either from 

a graphical user interface or from a command line with PowerShell. The release includes various 

PowerShell cmdlets, and an administrator is free to use whichever option makes the most sense. 

CARDSPACE 2.0 

CardSpace 2.0 is the second version of Microsoft’s CardSpace technology. The basics are the same as in 

the original, with enhancements that reflect what CardSpace’s designers have learned since its first 

release. This section takes a deeper look at how this technology works, including the most important 

changes in CardSpace 2.0.  

To a user, CardSpace 2.0 represents each available identity as a card, as shown earlier in Figure 6. When a 

user selects a card, CardSpace 2.0 requests a token from an STS at the corresponding identity provider. 

But how is the connection made between the card seen by a user and this STS? The answer is that each 

association between a card and an identity provided by some STS is represented by an information card. 

Figure 14 shows how this looks. 
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Figure 14: Each information card is associated with a particular digital identity at some identity 

provider. 

An information card is just an XML file, and as the figure shows, each one represents a relationship with 

an identity provider. This relationship lets the user get tokens from the identity provider for use with 

applications willing to accept these tokens. The information card contains everything needed to find the 

right STS at the right identity provider, then request a token for the identity this card represents. The card 

doesn’t contain any claims, however; these are all maintained by the identity provider. The sole purpose 

of the information card is to store the information needed to find the right STS and request a token for a 

particular identity. 

The terminology can get confusing, so here’s a quick recap: A user selects a card (a visual representation) 

that’s associated with an information card (an XML file) that contains all of the information needed to 

request a token (a signed group of bytes issued by an STS). Don’t confuse information cards with tokens—

they’re not the same thing. 

Next question: Since every identity a user has is represented by an information card stored on the user’s 

machine, how do the information cards get there? The answer is that it’s up to the STS. Information cards 

don’t contain confidential information—they don’t hold a password the user supplies to authenticate 

token requests to the STS, for instance—so the problem isn’t too challenging. AD FS 2.0 can install an 

information card on a user’s machine in various ways, as can STSs from other vendors. Similarly, other 
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identity selectors that support information cards, such as the Higgins Selector, can accept cards provided 

by AD FS 2.0 and other STSs.  

Another challenge for information card-based identity is supporting roaming users. Many of us use a 

desktop computer at work, another one at home, and a laptop while we’re traveling, yet we’d like to 

present the same digital identity from all of them. Doing this is straightforward: When at a different 

machine, the user just requests the information card from the STS again. Since information cards don’t 

contain secrets, there’s no need to carry around a copy of the card on, say, the user’s laptop machine.  

Making identity selectors successful means making information cards ubiquitous. Toward this end, a 

group of vendors and users has created the Information Card Foundation (www.informationcard.net), an 

organization dedicated to making this technology succeed. The foundation’s board members comprise a 

range of organizations, including Equifax, Google, Microsoft, Novell, Oracle, and PayPal. The Liberty 

Alliance, another important identity organization, is also a founding member of the foundation. 

Before closing this discussion of CardSpace, it’s worth listing some of the most important changes in 

CardSpace 2.0. One of the most important is that CardSpace 2.0 is now available separately from the .NET 

Framework, making it smaller and faster. This new release also contains optimizations for applications 

that users visit repeatedly. For example, a return visit to a Web site can display the card you used to login 

to this site last time directly in the Web page—the CardSpace 2.0  screen needn’t appear. In some cases, 

the user can even check a box in the CardSpace 2.0 selector screen to specify that a specific identity 

should be used over and over to access a particular application. Doing this helps minimize the number of 

times a user will need to explicitly select an identity. Also, an enterprise administrator can use Group 

Policy to push information cards to desktops of users in that enterprise. These policies can require using a 

specific card—and thus a specific identity—to access a particular application. If this is done, those 

identities will be used without users ever needing to see the CardSpace 2.0 selector screen.  

One more change in this new release is the removal of something that was part of the technology’s first 

version: self-issued cards. This option provided an STS that ran on the user’s desktop, and it let each user 

act as his own identity provider. Rather than relying on an external provider to create information cards 

and issue tokens, a user could create his own. Only the user stood behind these identities, however—no 

external organization vouched for the truth of the claims they contained—and so they were useful only in 

limited situations. While self-issued cards might reappear in a future CardSpace release, the ability to act 

as your own identity provider has been removed from CardSpace 2.0.  

WINDOWS IDENTITY FOUNDATION  

An STS provides tokens containing identity information, while an identity selector helps users choose 

which tokens they’d like to use. Yet both are pointless unless applications are modified to accept and use 

these tokens. The goal of WIF is to make it easier to do this, helping developers create claims-aware 

applications. 

As described earlier, for example, WIF provides built-support for verifying a token’s signature and 

extracting its claims. Each claim is extracted into an instance of a WIF-defined Claim class, providing a 

consistent way for developers to work with a token’s information. This class’s properties include things 

such as: 

http://www.informationcard.net/
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 ClaimType, indicating what kind of claim this is. Does the claim contain a user’s name, for 

example, or a role, or something else? Claim types are identified by strings, which are just URIs. 

 Value, containing the actual content of the claim, such as the user’s name. 

 Issuer, which specifies the identity provider this claim came from. In other words, this is the 

entity asserting that this claim is true. 

Along with helping developers create claims-aware applications, WIF also provides support for creating a 

custom STS. Even though a primary goal of AD FS 2.0 is to reduce the need to hand roll your own STS, 

there are situations where building an STS can make sense. For example, an ISV might use WIF to create a 

custom STS for its own purposes.  

Microsoft also provides support for using Visual Studio with WIF. The WIF Software Development Kit 

(SDK) provides project types for creating a claims-aware Web application, a claims aware Web service, 

and more. And when an application is being created that uses WIF, its developer can create a local STS in 

Visual Studio for development. This STS can emit tokens containing any claims the developer chooses. 

This makes development simpler by eliminating the need to contact an AD FS administrator to configure 

claims in the main STS. When the application is ready for deployment, the developer can use Visual Studio 

to point it at the STS in AD FS 2.0 (or another one) rather than the test version. 

There’s a lot more in WIF, and creators of claims-aware Windows applications will need to become 

familiar with this library. For a more detailed look at this technology and how to use it, see the Microsoft 

Windows Identity Foundation (WIF) Whitepaper for Developers, available at 

http://www.microsoft.com/downloads/details.aspx?familyid=9CA5C685-3172-4D8F-81CB-

1A59BDC9F7E3&displaylang=en. 

Finally, note that some existing applications can be made claims-aware with no code changes at all. For 

example, an ASP.NET application that uses Windows Integrated Authentication (i.e., Kerberos) and 

traditional Windows identities can be made claims-aware by just installing and correctly configuring WIF. 

A module in WIF is capable of mapping a claims-based token issued by AD FS 2.0 or another STS into a 

standard Windows security context with security identifiers (SIDs). 

CONCLUSIONS 

Changing how people and applications work with identity is not a small thing. The whole world needn’t 

change at once, however. Claims-based applications can be built and deployed alongside existing 

applications, which makes migration to this much-improved approach simpler. 

With the advent of AD FS 2.0, CardSpace 2.0, and Windows Identity Foundation, all of the pieces required 

to use claims-based identity on Windows are here. While this style of working with identity is far from a 

Microsoft-only initiative, making these components widely available for Windows is bound to make it 

more popular. For anyone who cares about improving the way we use identity in the digital world, this is 

certainly a step forward.  
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