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Why DocumentDB? 

Suppose you’re responsible for creating a new application. You’re not entirely sure what kinds of data it will work 

with, although you know that it will be used by a variety of clients. You’re also not sure how that data should be 

structured; things are bound to change over the application’s lifetime. You’re not even sure how much data the 

application will need to handle.  

You do know some things, however. You know you want the application to run in the public cloud, for all of the 

usual reasons: fast deployment, low cost, scalability, and more. You know that the application needs to be 

available all the time, which means that downtime for things like schema changes isn’t an option. You know that 

you’ll need powerful queries and atomic transactions—simple reads and writes aren’t enough. And you know that 

you’d like to build on your existing knowledge rather than be forced to grapple with an entirely unfamiliar 

technology. 

You could use a relational database for this application. On Microsoft Azure, for example, you might use SQL 

Database, which is a managed relational service, or you might run your own database server in a virtual machine. 

But going this route requires defining a schema up front, then probably accepting downtime whenever you modify 

that schema to handle changes in the structure of your data. Relational databases can also be hard to scale for lots 

of data, and using one means addressing the challenge of object/relational mapping. 

Is there another option? There is; instead of a relational database, your application can use DocumentDB, a 

managed NoSQL database service provided by Microsoft Azure. 

DocumentDB is designed for situations like the one just described. It doesn’t require any kind of schema, opting 

instead to store data as JavaScript Object Notation (JSON). This frees application developers from being locked into 

a hard-to-change structure for their data. It also frees them from worrying about object/relational mapping, since 

the state of their application’s objects can typically be stored directly as JSON. And because DocumentDB is a 

managed Azure service, a developer can create a new database in minutes, then let DocumentDB handle much of 

the management. All of this makes development, deployment, and updating simpler and faster. 

To support applications with lots of users and lots of data, DocumentDB is designed to scale: a single database can 

be spread across many different machines, and it can contain hundreds of terabytes of data. DocumentDB also 

provides a query language based on SQL, along with the ability to run JavaScript code directly in the database as 

stored procedures and triggers with atomic transactions.  

The truth is that applications are different today, and the way they work with data is different, too. Database 

technologies are evolving to reflect these changes, as DocumentDB shows. And this NoSQL database service isn’t 

difficult to understand—you just need to grasp a few fundamental concepts. Those concepts include: 

 The DocumentDB data model. 

 How applications work with data. 

 The options applications have for balancing performance with data consistency. 

What follows looks at each of these. 
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The DocumentDB Data Model 

DocumentDB’s data model is simple: all data is stored in JSON documents1.  For example, suppose you’re creating a 

DocumentDB application that works with customers. Information about each of those customers would typically 

be described in its own JSON document, and so the document for the customer Contoso might look like this: 

{ 

  "name": "Contoso", 

  "country": "Germany", 

  "contacts":  

   [ 

     {"admin": "Johann Schmidt", "email": "johschmidt@contoso.com"}, 

     {"purchasing": "Anusha Swarmi", "email": "anusha@contoso.com"} 

   ], 

  "salesYTD": 49003.23 

} 

The document for the customer Fabrikam would likely be similar, but it needn’t be identical. It might look like this: 

{ 

  "name": "Fabrikam", 

  "country": "USA", 

  "contacts":  

   [ 

     {"ceo": "Mary Chen", "email": "mary@fabrikam.com",  

      "phone": "510-555-3443"}, 

     {"purchasing": "Frank Allen", "email": "franka@fabrikam.com",  

      "email": "fallen@fabrikam.com"} 

   ], 

  "salesRank": 3, 

  "salesYTD": 1399450.22 

} 

As these simple documents show, JSON data is modelled as name/value pairs. In this example, each customer has 

elements for name and country, with an appropriate value for each one. Each also has a contacts element, the 

value for which is an array of name/value pairs wrapped in square brackets. An element’s values can be character 

strings, integers, floating point numbers, or another JSON type. 

Notice that while these two customer documents are similar, their structure isn’t identical. This is fine; 

DocumentDB doesn’t enforce any schema. In this example, both customers have several common elements, such 

as name and country. There are also differences, however. The contacts for Fabrikam include the CEO—they're a 

big customer—along with her phone number. Also, the purchasing manager for Fabrikam has two email addresses, 

rather than the single address for Contoso’s purchasing manager, and the Fabrikam document contains an element 

describing its sales rank. This is all perfectly legal in DocumentDB. Since there's no schema, there's no requirement 

that all documents conform to the same structure. 

                                                                 

1 As its name suggests, DocumentDB fits in the NoSQL category known as document databases. It’s not a key/value 
store like Azure Tables or a column family store like HBase. 
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DocumentDB groups JSON documents into collections. A single DocumentDB database can contain many 

collections; to grow the database, you just add a new collection. Figure 1 shows how this looks. 

 

Figure 1: A DocumentDB database contains collections of JSON documents. 

As the figure suggests, the documents in a particular collection might all look quite similar, with each one 

containing, say, the information for a specific customer in the style shown earlier. It’s also possible for each 

document in a collection to look completely different—DocumentDB doesn’t constrain this. Unlike a relational 

table, where every row holds data in a fixed set of columns, a document can contain whatever the application 

needs. And although it’s not shown in Figure 1, documents can have attachments such as videos that are 

accessible via DocumentDB but are physically stored in Azure Blobs or elsewhere. 

With DocumentDB, an application typically keeps all of the data about some entity, such as a customer, in a single 

document. Unlike a relational database, which would probably spread that data across several different tables, 

applications using DocumentDB commonly keep it all together. While the style used by a relational database has 

some advantages, storing all of an object’s data in one place can make life simpler for application developers. 

Rather than accessing their data using complex queries with one or more joins, for example, they can instead work 

directly with a document containing everything they need. This approach also speeds up access, since a 

DocumentDB request can often look at just one document to find what's needed.  

Working with Data 

DocumentDB clients can be written in multiple languages, including C#, JavaScript, and Python. Whatever choice a 

developer makes, the client accesses DocumentDB through RESTful access methods. A developer can use these to 

work with documents in a collection in a few different ways. The options are: 

 Using these access methods directly for create/read/update/delete (CRUD) operations. 

 Submitting requests expressed in DocumentDB SQL. 
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 Defining and executing logic that runs inside DocumentDB, including stored procedures, triggers, and user-

defined functions (UDFs). 

Figure 2 illustrates these options. 

 

Figure 2: Clients access documents in collections via RESTful access methods and can also run logic in the 

database itself. 

 

RESTful Access Methods 
If an application has the necessary permissions, it can use DocumentDB’s RESTful access methods to perform CRUD 

operations on documents and other resources. Like every RESTful interface, DocumentDB uses the standard HTTP 

verbs: 

 A GET request returns the value of a resource, such as a document. 

 A PUT request replaces a resource. 

 A POST request creates a new resource. POSTs are also used to send DocumentDB SQL requests and to create 

new stored procedures, triggers, and UDFs. 

 A DELETE request removes a resource. 

A developer using this interface is free to construct requests manually—it’s just REST. But to make life easier, 

DocumentDB provides several client libraries. As Figure 2 shows, the options include .NET (with LINQ support), 

JavaScript, Node.js, and Python.  
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DocumentDB SQL  
A DocumentDB client can read and write data using the service’s RESTful access methods. But a real database 

needs a real query language, something that lets applications work with data in more complex ways. This is what 

DocumentDB SQL provides. 

This language is an extended subset of SQL, a technology that many developers already know. For example, 

suppose the simple JSON documents shown earlier are contained in a collection called customers. Here’s a query 

on that collection: 

SELECT c.salesYTD  

FROM customers c  

WHERE c.name = "Fabrikam"  

As anybody who knows SQL can probably figure out, SELECT requests the value of the element salesYTD, FROM 

indicates that the query should be executed against documents in the customers collection, and WHERE specifies 

the condition that documents within that collection should meet. The query’s result is year-to-date sales for 

Fabrikam formatted as JSON data: 

{ 

    "salesYTD": 1399450.22 

} 

 

 

DocumentDB’s Native Tongue: JavaScript 

Whether an application uses DocumentDB’s client libraries or directly invokes its RESTful access 

methods, the code can be written in many different languages. Still, it’s fair to say that the native tongue 

of DocumentDB is JavaScript. 

One reason for this is that DocumentDB returns results in JSON. A JavaScript application can use a JSON 

parser to turn these results directly into JavaScript variables, modify those variables, then send the 

changed data back to the database. This is a simple, natural way to work; there’s no impedance 

mismatch, which means there’s also no need for mapping, object/relational or otherwise.  

Also, logic that executes within DocumentDB itself, including stored procedures, triggers, and UDFs, must 

be written in JavaScript, as described later. While developers working in C# or other languages can 

certainly use DocumentDB successfully, writing code that runs in the database will require learning 

JavaScript or finding somebody who knows it. Given the large (and growing) number of developers who 

already work in this language, it shouldn’t be surprising that DocumentDB’s creators chose to make it a 

fundamental part of this cloud database service. 
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Executing Logic in the Database 
DocumentDB SQL lets a client issue a request that’s parsed and executed when it’s received. But there are plenty 

of situations where it makes more sense to run logic stored in the database itself. DocumentDB provides several 

ways to do this, including stored procedures (commonly called sprocs), triggers, and user-defined functions (UDFs). 

A collection can contain any or all of them. 

Stored Procedures 

Stored procedures implement logic, which means they must be written in some programming language. Relational 

databases commonly create their own language for doing this, such as SQL Server’s T-SQL. But what should this 

language look like for a database that stores JSON documents? The answer is obvious: stored procedures should 

be written in JavaScript, which is exactly what DocumentDB does.  

To execute a stored procedure, a client application issues a POST request indicating which sproc to run and passing 

in any input parameters. Figure 2 illustrates how the sproc works with documents in a collection.  

Indexing in DocumentDB  

Indexes are an important aspect of database technologies. Creating an index makes lookups faster, and 

so operations on indexed elements will have better performance. Some NoSQL databases, such as 

many key/value stores, provide just a single index. Other approaches, such as relational databases and 

some document databases, let their users explicitly create indexes on particular elements.  

DocumentDB takes neither of these paths. Instead, it by default creates an index on every document in 

a collection. In the example documents shown earlier, for example, DocumentDB would automatically 

create indexes on name, country, contacts, and more. Developers don't need to decide up front which 

JSON elements they're likely to query on, then create indexes only for those elements. DocumentDB 

automatically indexes all of them (and advanced users can configure and tune these indexes as 

needed). This gives ad hoc queries speedy access to everything in the database. 
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Figure 3: A stored procedure is JavaScript code that works directly with document elements as variables. 

As the figure shows, sprocs work with documents in a straightforward way. When the sproc begins, elements of 

the JSON document (or documents) it’s working with are copied into JavaScript variables (step 1). The sproc’s code 

then works with those variables, changing them as needed (step 2). When the sproc completes, any modified 

variables can have their values written back to the JSON document (step 3). The goal is to make writing sprocs as 

simple and natural as possible—they’re just JavaScript.  

Every sproc is wrapped in an atomic transaction. If the sproc ends normally, all of the changes it has made to 

documents in this collection will be committed. If it throws an exception, however, all of the changes it has made 

to these documents will be rolled back. And while the sproc is executing, its work is isolated—no other requests to 

this database will see partial results. 

Stored procedures can make life easier for developers, since logic that might otherwise be replicated in multiple 

applications can instead be encapsulated in the database. Stored procedures can also have performance 

advantages. Rather than requiring an application to issue multiple requests to accomplish a task, for example, with 

the round trips this implies, a sproc can do all of this work with a single call. While stored procedures aren’t right 

for every situation, they’re definitely a useful and important part of modern databases. 

Triggers 

DocumentDB triggers are similar in some ways to stored procedures: they’re invoked via a POST request, and 

they’re written in JavaScript. They also materialize JSON documents into JavaScript variables and are automatically 

wrapped in an atomic transaction. Unlike sprocs, however, a trigger runs when a specific event happens, such as 

data being created, changed, or deleted.  
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DocumentDB supports pre-triggers, which run before the event occurs, and post-triggers, which run after the 

event has finished. For example, a pre-trigger executed when a document is changed might do data validation, 

making sure that the new data conforms to a specific format. A post-trigger run when a document is created might 

update another document in the collection that tracks all newly created information. If an application creates and 

registers these two triggers, future requests to change or add documents can indicate that the database should 

also run the appropriate trigger. Rather than requiring the application to explicitly perform data validation and 

document tracking itself, it can rely on the triggers to handle these.  

If a trigger throws an exception, the transaction it’s part of aborts, and everything gets rolled back. This includes 

the work done by the trigger itself and the work done by whatever request caused the trigger to execute. For 

example, if a post-trigger run on document creation aborts, the new document will not be created.  

Triggers are a useful way to carry out common database functions, and like stored procedures, they’re an integral 

part of modern databases. 

User-Defined Functions 

Like stored procedures and triggers, user-defined functions are written in JavaScript, and they run within 

DocumentDB itself. UDFs can’t make changes to the database, however—they’re read-only. Instead, a UDF 

provides a way to extend DocumentDB SQL with custom code. 

For example, suppose the customers collection contained a UDF called calculateTax that computed the tax on 

sales. To find all customers where the tax is more than $1,000, an application might issue a query like this: 

SELECT * 

FROM customers c 

WHERE calculateTax(c.salesYTD)> 1000 

Putting this calculation in a UDF makes it easier to use, since it acts like part of the query language. It also makes 

the logic simpler to share, since it’s stored in the database rather than in a single application.  

UDFs can do quite a bit more than this. Since they’re written in JavaScript, they make it straightforward to add 

standard JavaScript functions to DocumentDB SQL. They can also be used to check for the presence of elements in 

a document, such as returning all customer documents that have a salesRank element, or implementing geospatial 

queries, such as NEAR, or many other things. The ability to extend the query language with custom JavaScript code 

can make life substantially easier for the people who use DocumentDB. 
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Consistency Options 

DocumentDB is designed to be both scalable and reliable. To achieve this, it maintains at least three copies of all 

data, storing each copy on a different physical server. This replication is done at the granularity of collections: a 

single server can store multiple collections, but a collection is never split across servers.  

Replication helps scalability because different clients reading data in the same collection can potentially have their 

requests handled by any of the replicas—a single server won’t be a bottleneck. Replicating each collection also 

helps reliability by ensuring that data is still available even if one or two servers become inaccessible.  

But replication isn’t free. In any replicated system, the big challenge happens when clients write data. How can a 

document be changed while still keeping everything consistent? Propagating a write across all replicas takes some 

time, and while it’s happening, either the same application or another one might read this just-modified data. If 

this read is handled by a replica that’s already been updated, life is good; the application will see the correct data. 

But suppose the read is handled by one of the replicas that hasn’t yet been informed of the latest write. In this 

case, the read will return out-of-date data. 

What’s the best way to handle this situation? The answer depends on the application. In some cases, applications 

absolutely need to see the most current data on every read. But some applications can accept reading slightly out-

of-date information, which can improve the application’s performance and availability. 

Because different applications have different requirements, DocumentDB doesn’t mandate a choice. Instead, it 

defines four distinct consistency options, each with different tradeoffs between data correctness and 

performance. The choices are: 

Managing Resources 

DocumentDB is a multi-tenant service. In other words, many different client applications use it at the same 

time. But suppose one of those clients runs a stored procedure or a trigger or a UDF that eats up a huge share 

of the service’s resources. Won’t this cause performance to suffer for the other clients? 

Fortunately, this can’t happen with DocumentDB. The reason is that a DocumentDB user pays for a specific 

number of capacity units (CUs), each of which provides a defined amount of storage and throughput. If you 

need more of either, you can pay for more CUs. If your requirements decrease, you can use fewer CUs.  

A stored procedure or other request that exceeds the number of CUs you’ve paid for will be stopped—it can’t 

use resources that are reserved for other users. The result is that applications are guaranteed a specific 

performance level for database requests regardless of who else might be using the service at the same time. 
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 Strong: A DocumentDB client always sees completely consistent data. The tradeoff is that reads and writes are 

slower than with the other three options. An application that must always see the most current data, such as 

banking software that moves money between documents, might choose this option.  

 Bounded Staleness: A client might see old data, but it’s guaranteed to see changes in the order in which they 

were made. In other words, clients will never see out-of-order data. A client can also specify a limit for how 

old that data can be, e.g., one second. In a multi-player game, for instance, which requires great performance 

and strict ordering of events, Bounded Staleness might be the right choice. 

 Session: A client will always read its own writes correctly, but other clients reading this same data might see 

older values or out-of-order updates. An application that works on behalf of a specific user, such as a blogging 

application, might choose this option. In cases like these, each user expects to see the changes she makes, i.e., 

everything done in her session, right away. Yet she probably doesn’t care whether there’s a slight delay in 

seeing changes made by other users. This turns out to be the sweet spot for many applications—it has the 

best trade-off between correctness and performance—and so it’s the default in DocumentDB. 

 Eventual: This option has the highest performance, but a client might sometimes read out-of-date information 

or see updates out of order.  

DocumentDB databases default to Session consistency, but developers can change a database’s default if 

necessary. They can also override the default consistency level on a per-request basis.  But because different 

applications really do have different requirements, DocumentDB doesn’t mandate a choice. Developers are free to 

use the consistency option that’s best for their situation. 

Conclusion 

DocumentDB is a relatively simple and scalable database—it’s a NoSQL technology—that also provides more 

advanced data management capabilities such as a SQL-based query language, stored procedures, and atomic 

transactions. You should consider using it whenever your application needs any or all of the following:  

 The programming ease provided by native JSON and JavaScript support. 

 The flexibility of not being locked into a schema. 

 The scale and availability allowed by replicating data across multiple machines. 

 The simplicity of a managed database service on a public cloud platform. 

As computing continues its move to the cloud, more and more applications can benefit from this approach. In fact, 

a cloud platform that doesn’t offer a document database today is probably behind the times. 
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